Please use this identifier to cite or link to this item:
Type: Artigo
Title: Improving Semi-supervised Learning Through Optimum Connectivity
Author: Amorim
Willian P.; Falcao
Alexandre X.; Papa
Joao P.; Carvalho
Marcelo H.
Abstract: The annotation of large data sets by a classifier is a problem whose challenge increases as the number of labeled samples used to train the classifier reduces in comparison to the number of unlabeled samples. In this context, semi-supervised learning methods aim at discovering and labeling informative samples among the unlabeled ones, such that their addition to the correct class in the training set can improve classification performance. We present a semi-supervised learning approach that connects unlabeled and labeled samples as nodes of a minimum-spanning tree and partitions the tree into an optimum-path forest rooted at the labeled nodes. It is suitable when most samples from a same class are more closely connected through sequences of nearby samples than samples from distinct classes, which is usually the case in data sets with a reasonable relation between number of samples and feature space dimension. The proposed solution is validated by using several data sets and state-of-the-art methods as baselines. (C) 2016 Elsevier Ltd. All rights reserved.
Subject: Semi-supervised Learning
Optimum-path Forest Classifiers
Editor: Elsevier Sci LTD
Rights: fechado
Identifier DOI: 10.1016/j.patcog.2016.04.020
Date Issue: 2016
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000383525600008.pdf3.21 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.