Please use this identifier to cite or link to this item:
Type: Artigo
Title: Volume Gradients And Homology In Towers Of Residually-free Groups
Author: Bridson
Martin R.; Kochloukova
Dessislava H.
Abstract: We study the asymptotic growth of homology groups and the cellular volume of classifying spaces as one passes to normal subgroups G(n) < G of increasing finite index in a fixed finitely generated group G, assuming boolean AND(n) G(n) = 1. We focus in particular on finitely presented residually free groups, calculating their l(2) betti numbers, rank gradient and asymptotic deficiency. If G is a limit group and K is any field, then for all j >= 1 the limit of dim H-j (G(n), K)/[G, G(n)] as n -> infinity exists and is zero except for j >= 1, where it equals-chi(G). We prove a homotopical version of this theorem in which the dimension of dim H-j (G(n), K) is replaced by the minimal number of j-cells in a K(G(n), 1); this includes a calculation of the rank gradient and the asymptotic deficiency of G. Both the homological and homotopical versions are special cases of general results about the fundamental groups of graphs of slow groups. We prove that if a residually free group G is of type FPm but not of type FP infinity, then there exists an exhausting filtration by normal subgroups of finite index Gn so that limn dim H-j (G(n), K)/[G : G(n)] = 0 for j <= m. If G is of type FP infinity, then the limit exists in all dimensions and we calculate it.
Editor: Springer Heidelberg
Rights: fechado
Identifier DOI: 10.1007/s00208-016-1387-0
Date Issue: 2017
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000398175700003.pdf678.5 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.