Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/326185
Type: Artigo
Title: The Mutation-drift Balance In Spatially Structured Populations
Author: Schneider
David M.; Martins
Ayana B.; de Aguiar
Marcus A. M.
Abstract: In finite populations the action of neutral mutations is balanced by genetic drift, leading to a stationary distribution of alleles that displays a transition between two different behaviors. For small mutation rates most individuals will carry the same allele at equilibrium, whereas for high mutation rates of the alleles will be randomly distributed with frequencies close to one half for a biallelic gene. For well-mixed haploid populatiorls the mutation threshold is mu(C) = 1/2N, where N is the population size. In this paper we study how spatial structure affects this mutation threshold. Specifically, we study the stationary allele distribution for populations placed on regular networks where connected nodes represent potential mating partners. We show that the mutation threshold is sensitive to spatial structure only if the number of potential mates is very small. In this limit, the mutation threshold decreases substantially, increasing the diversity of the population at considerably low mutation rates. Defining k(c) as the degree of the network for which the mutation threshold drops to half of its value in well-mixed populations we show that k(c) grows slowly as a function of the population size, following a power law. Our calculations and simulations are based on the Moran model and on a mapping between the Moran model with mutations and the voter model with opinion makers. (C) 2016 Elsevier Ltd. All rights reserved.
Subject: Allele Distribution
Mutation Threshold
Networks
Moran Model
Editor: Academic Press Ltd- Elsevier Science Ltd
London
Rights: fechado
Identifier DOI: 10.1016/j.jtbi.2016.04.024
Address: http://www-sciencedirect-com.ez88.periodicos.capes.gov.br/science/article/pii/S0022519316300522
Date Issue: 2016
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000377623700002.pdf825.89 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.