Please use this identifier to cite or link to this item:
Type: Artigo
Title: Controlled Density Of Defects Assisted Perforated Structure In Reduced Graphene Oxide Nanosheets-palladium Hybrids For Enhanced Ethanol Electro-oxidation
Author: Kumar
Rajesh; Savu
Raluca; Singh
Rajesh K.; Joanni
Ednan; Singh
Dinesh P.; Tiwari
Vidhu S.; Vaz
Alfredo R.; da Silva
Everson T. S. G.; Maluta
Jaqueline R.; Kubota
Lauro T.; Moshkalev
Stanislav A.
Abstract: Controlled creation of defects in graphene based materials is a promising strategy to tailor the electrical, electrochemical, mechanical and other properties aiming at novel applications. In this work, we report a simple and reliable strategy for producing large-scale perforated graphene oxide nanosheets-Pd hybrids as promising catalytic material through in situ formation and insertion of palladium nanoparticles (Pd-NPs) employing continuous microwave irradiation technique. A tentative mechanism for obtained microstructures with controlled density of defects is proposed based on structural and morphological characterization of the synthesized material. During the treatment, high enough temperatures are achieved to allow melting of PD-NPs. Further, the particles migrate randomly over the graphene surface gradually dissolving carbon atoms at the defective sites, and eventually leading to the formation of holes of different sizes and shapes by perforation. These processes (particles formation and migration, perforation, etc.) can easily be controlled by tuning the parameters of the irradiation process. The synthesized hybrid material was used as catalysts with improved sensitivity for ethanol electro-oxidation with current density of 10 mA/cm(2). (C) 2017 Elsevier Ltd. All rights reserved.
Subject: Reduced Graphene Oxide
Pd Nanoparticles
Microwave Irradiation
Perforated Structure
Defect-engineered Graphene
Ethanol Electro-oxidation
Editor: Pergamon-Elsevier Science LTD
Rights: fechado
Identifier DOI: 10.1016/j.carbon.2017.02.065
Date Issue: 2017
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000400212100016.pdf2.32 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.