Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/322779
Type: DISSERTAÇÃO DIGITAL
Degree Level: Mestrado
Title: Data coherence analysis and optimization = Análise de coerência de dados e otimização
Title Alternative: Análise de coerência de dados e otimização
Author: Sousa, Rafael Cardoso Fernandes, 1988-
Advisor: Araújo, Guido Costa Souza de, 1962-
Abstract: Resumo: Embora a computação heterogenea tenha permitido ganhos de desempenho (speed-ups) impressionantes, o conhecimento sobre a arquitetura dos dispositivos aceleradores para colher todos os benefícios de seu hardware ainda é algo crítico. A programação em cima dessas arquiteturas é complexa, propensa a erros e geralmente é feita por meio de lin- guagens especializadas (por exemplo, CUDA) ou bibliotecas (por exemplo, OpenCL). Em particular, para os programadores não especialistas, o custo de mover e manter dados co- erentes entre host e o dispositivo acelerador (device) pode facilmente eliminar quaisquer ganhos de desempenho alcançados pela aceleração. Esta dissertação propõe Análise de Coerência de Dados (DCA), uma simples e útil técnica de análise de fluxo de dados que determina como as variáveis são usadas pelo host/device em cada ponto do programa. Ela também introduz a Otimização de Coerência de Dados (DCO), um algoritmo baseado em DCA que: (a) usa informações das variáveis para alocar buffers OpenCL compartilhados entre o host e o device; e (b) inserir chamadas de função OpenCL apropriadas em pontos do programa de modo a minimizar o número de operações de coerência de dados. O DCO foi implementado no compilador GPUClang LLVM que é capaz de traduzir automatica- mente os loops anotados do OpenMP 4.X para kernels OpenCL, escondendo assim toda a complexidade da programação direta no OpenCL. Os resultados experimentais revelam que, enquanto GPUClang mostra desempenho de até 78x, GPUClang com DCO consegue speed-ups de até 84x em programas do benchmark Polybench rodando em um Exynos 8890 Octacore CPU com ARM Mali-T880 MP12 GPU e até 92x em um Processador dual core Intel Core i5 de 2,4 GHz equipado com uma unidade Intel Iris GPU

Abstract: Although heterogeneous computing has enabled some impressive program speed-ups, knowledge about the architecture of the target device is still critical to reap the full benefits of its hardware. Programming such architectures is complex, error-prone and is usually done by means of specialized languages (e.g. CUDA) or complex function libraries (e.g. OpenCL). In particular, for non-expert programmers the cost of moving and keeping host/device data coherent can easily eliminate any performance gains achieved by accel- eration. This dissertation proposes Data Coherence Analysis (DCA) a simple and yet useful data-flow analysis technique that determines how variables are used by host/device at each program point. It also introduces Data Coherence Optimization (DCO), a DCA- based algorithm that: (a) uses variable information to allocate OpenCL shared buffers between host and devices; and (b) inserts appropriate OpenCL function calls into program points so as to minimize the number of required data coherence operations. DCO was implemented in the GPUClang LLVM compiler which is capable of automatically trans- lating OpenMP 4.X annotated loops to OpenCL kernels, thus hiding all the complexity of directly programming in OpenCL. Experimental results reveal that while GPUClang shows performance of up to 78x, GPUCLang with DCO can achieve speed-ups of up to 84x on programs from the Polybench benchmark running on an Exynos 8890 Octacore CPU with ARM Mali-T880 MP12 GPU and up to 92x on a 2.4 GHz dual-core Intel Core i5 processor equipped with an Intel Iris GPU unit
Subject: Arquitetura de computador
Compiladores (Computadores)
Computação heterogênea
Kernel, Mapeamento de
Language: Inglês
Editor: [s.n.]
Citation: SOUSA, Rafael Cardoso Fernandes. Data coherence analysis and optimization = Análise de coerência de dados e otimização. 2017. 1 recurso online (55 p.). Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/322779>. Acesso em: 1 set. 2018.
Date Issue: 2017
Appears in Collections:IC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Souza_RafaelCardosoFernandes_M.pdf1.21 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.