Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/322717
Type: DISSERTAÇÃO DIGITAL
Degree Level: Mestrado
Title: CENTRIST3D = a spatio-temporal descriptor for abnormality detection in crowd videos = CENTRIST3D: um descritor espaço-temporal para detecção de anomalias em vídeos de multidões
Title Alternative: CENTRIST3D : um descritor espaço-temporal para detecção de anomalias em vídeos de multidões
Author: Sousa, Erick Luis Moraes de, 1990-
Advisor: Pedrini, Hélio, 1963-
Abstract: Resumo: O campo de estudo da detecção de anomalias em multidões possui uma vasta gama de aplicações, podendo-se destacar o monitoramento e vigilância de áreas de interesse, tais como aeroportos, bancos, parques, estádios e estações de trens, como uma das mais importantes. Em geral, sistemas de vigilância requerem prossionais qualicados para assistir longas gravações à procura de alguma anomalia, o que demanda alta concentração e dedicação. Essa abordagem tende a ser ineciente, pois os seres humanos estão sujeitos a falhas sob condições de fadiga e repetição devido aos seus próprios limites quanto à capacidade de observação e seu desempenho está diretamente ligado a fatores físicos e psicológicos, os quais podem impactar negativamente na qualidade de reconhecimento. Multidões tendem a se comportar de maneira complexa, possivelmente mudando de orientação e velocidade rapidamente, bem como devido à oclusão parcial ou total. Consequentemente, técnicas baseadas em rastreamento de pedestres ou que dependam de segmentação de fundo geralmente apresentam maiores taxas de erros. O conceito de anomalia é subjetivo e está sujeito a diferentes interpretações, dependendo do contexto da aplicação. Neste trabalho, duas contribuições são apresentadas. Inicialmente, avaliamos a ecácia do descritor CENsus TRansform hISTogram (CENTRIST), originalmente utilizado para categorização de cenas, no contexto de detecção de anomalias em multidões. Em seguida, propusemos o CENTRIST3D, uma versão modicada do CENTRIST que se utiliza de informações espaço-temporais para melhorar a discriminação dos eventos anômalos. Nosso método cria histogramas de características espaço-temporais de quadros de vídeos sucessivos, os quais foram divididos hierarquicamente utilizando um algoritmo modicado da correspondência em pirâmide espacial. Os resultados foram validados em três bases de dados públicas: University of California San Diego (UCSD) Anomaly Detection Dataset, Violent Flows Dataset e University of Minesota (UMN) Dataset. Comparado com outros trabalhos da literatura, CENTRIST3D obteve resultados satisfatórios nas bases Violent Flows e UMN, mas um desempenho abaixo do esperado na base UCSD, indicando que nosso método é mais adequado para cenas com mudanças abruptas em movimento e textura. Por m, mostramos que há evidências de que o CENTRIST3D é um descritor eciente de ser computado, sendo facilmente paralelizável e obtendo uma taxa de quadros por segundo suciente para ser utilizado em aplicações de tempo real

Abstract: Crowd abnormality detection is a eld of study with a wide range of applications, where surveillance of interest areas, such as airports, banks, parks, stadiums and subways, is one of the most important purposes. In general, surveillance systems require well-trained personnel to watch video footages in order to search for abnormal events. Moreover, they usually are dependent on human operators, who are susceptible to failure under stressful and repetitive conditions. This tends to be an ineective approach since humans have their own natural limits of observation and their performance is tightly related to their physical and mental state, which might aect the quality of surveillance. Crowds tend to be complex, subject to subtle changes in motion and to partial or total occlusion. Consequently, approaches based on individual pedestrian tracking and background segmentation may suer in quality due to the aforementioned problems. Anomaly itself is a subjective concept, since it depends on the context of the application. Two main contributions are presented in this work. We rst evaluate the eectiveness of the CENsus TRansform hISTogram (CENTRIST) descriptor, initially designed for scene categorization, in crowd abnormality detection. Then, we propose the CENTRIST3D descriptor, a spatio-temporal variation of CENTRIST. Our method creates a histogram of spatiotemporal features from successive frames by extracting histograms of Volumetric Census Transform from a spatial representation using a modied Spatial Pyramid Matching algorithm. Additionally, we test both descriptors in three public data collections: UCSD Anomaly Detection Dataset, Violent Flows Dataset, and UMN Datasets. Compared to other works of the literature, CENTRIST3D achieved satisfactory accuracy rates on both Violent Flows and UMN Datasets, but poor performance on the UCSD Dataset, indicating that our method is more suitable to scenes with fast changes in motion and texture. Finally, we provide evidence that CENTRIST3D is an ecient descriptor to be computed, since it requires little computational time, is easily parallelizable and achieves suitable frame-per-second rates to be used in real-time applications
Subject: Anomalias
Visão por computador
Aprendizado de máquina
Multidões
Language: Inglês
Editor: [s.n.]
Citation: SOUSA, Erick Luis Moraes de. CENTRIST3D: a spatio-temporal descriptor for abnormality detection in crowd videos = CENTRIST3D: um descritor espaço-temporal para detecção de anomalias em vídeos de multidões. 2017. 1 recurso online (56 p.). Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/322717>. Acesso em: 1 set. 2018.
Date Issue: 2017
Appears in Collections:IC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Sousa_ErickLuisMoraes de_M.pdf4.24 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.