Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/321916
Type: TESE DIGITAL
Title: Self-modeling regression and application = Regressão de auto-modelagem e aplicações
Title Alternative: Regressão de auto-modelagem e aplicações
Author: Mastanishirazi, Aliakbar, 1982-
Advisor: Pinheiro, Aluísio de Souza, 1967-
Abstract: Resumo: Uma classe ampla de problemas nas ciências físicas dão origem aos experimentos nas quais a resposta observada é uma curva contínua. Esta é a situação em que, por exemplo, se estuda a resposta de audição, ou electrocardiogramas na população humana, ou quando são mensuradas curvas espectrofotométricas de um produto amostrado, ou observa-se curvas de reação em experimentos químicos planejados. A análise de tais experimentos impõe certos problemas porque a maior parte dos procedimentos estatísticos contém a análise de populações em que a variável física observada é um único valor numérico, ou um vetor de tais valores, em vez de uma curva inteira. Por esta razão, geralmente busca-se um modelo paramétrico para a população total de curvas. Ao utilizar o modelo mencionado, pode-se associar um vetor de valores de parâmetros para cada possível curva observável na população. Cada população tem sua própria forma de curva característica; Isso é, todas as curvas dentro de uma população parecem ter a mesma forma básica. Parece que todas as curvas em uma população determinada podem coincidir se fossem devidamente escaladas e deslocadas. Métodos para modelar os conjuntos de curvas complexas onde as curvas devem ser alinhadas no tempo (ou em outro preditor contínuo) são incluídos na classe geral de análise de dados funcionais e incluem procedimentos de regressão auto-modelagem. Regressão auto-modelagem, também conhecida como modelo de forma invariante, supõe que as curvas têm uma forma comum, modeladas de forma não paramétrica e diferenças específicas de cada curva em amplitude e tempo, tradicionalmente modeladas por transformações lineares. O presente trabalho tem por objetivo o uso de regressão auto-modelagem para a análise de dados ordinais quando as probabilidades cumulativas condicionais para uma categoria de um resultado têm uma relação com o modelo de forma invariante. Para ajustar as curvas individuais foi usado um modelo misto linear para transformar as escalas de tempo e da resposta. É demonstrado o caso quando os parâmetros podem ser modelados mediante de um modelo misto linear, a inferência para parâmetros pode proceder como se a função de forma fosse uma função de regressão conhecida. A curva de tempo da população é modelada por uma regressão \textit{spline} penalizada. Como uma aplicação a severidade da toxicidade gênito-urinária foi avaliada para pacientes com câncer de próstata que receberam diferentes doses de radiação. As respostas ordinais (severidade dos efeitos colaterais) foram registradas longitudinalmente junto com o estágio do câncer de um paciente. Vamos nos concentrar na questão de saber se o nível de dosagem da radiação afeta a severidade da toxicidade gênito-urinária (bexiga), o qual é um efeito colateral da terapia de radiação. Uma vez que usualmente há censura nos dados, também nos propusemos o uso do modelo longitudinal de auto-modelagem baseado em censura à direita. Em um estudo de recuperação pós-cirúrgica, consideramos o efeito de dose de anestesia sobre recuperação. Em particular, investigou-se a interação entre o efeito da dose e do tempo de acompanhamento. Em um estudo de medicina, pacientes com vários estágios da doença podem ser curados ou o estágio da doença deles pode ser mudado após o tratamento. Demonstramos um novo modelo de cura com alguns estágios de pacientes curados ou não curados ao contrário do modelo de cura comum com dois estágios. O modelo aloca a probabilidade destes estágios precisamente por regressão ordinal de auto-modelagem. Esquizofrenia como uma doença mental pode vir em várias formas com diferentes sintomas e resultados. Considerou-se o efeito de quatro medicações em pacientes com esquizofrenia no modelo de cura. No final, usamos o modelo binário de auto-modelagem no modelo de cura mistura de risco acelerada com efeitos aleatórios de tal modo que o modelo estendido pode ser aplicado para o tempo de ocorrência de um evento. Aplicamos o modelo para o conjunto de dados de doença respiratória. A técnica de maximização esperada de Monte Carlo é utilizada para estimar os parâmetros do modelo. Estudos de simulação também são realizadas para justificar as metodologias utilizadas

Abstract: A large class of problems in the physical sciences give rise to experiments where observed response is a continuous curve. For instance, this situation occurs when one studies hearing response, or electrocardiograms in the human population, or when one measures spectrophotometric curves from sampled product, or observes reaction curves in designed chemical experiments. The analysis of such experiments poses certain problems because the bulk of the statistical procedures is concerned with the analysis of populations in which the physical observable is a single numerical value, or a vector of such values, rather than an entire curve. For this reason one has usually sought a parametric model for the total population of curves. By using such a model, one can associate a vector of parameter values with each possible observable curve in the population. Each population has its own characteristic curve shape; that is, the curves within a population all seem to have the same basic shape. It appears that all the curves in a given population might coincide if they were properly scaled and shifted. Methods for modeling sets of complex curves where the curves must be aligned in time (or in another continuous predictor) fall into the general class of functional data analysis and include self-modeling regression procedures. Self-modeling regression, also known as a shape invariant model, assumes the curves have a common shape, modeled non-parametrically, and curve-specific differences in amplitude and timing, traditionally modeled by linear transformations. This study proposed the use of self-modeling regression to analysis the data when the conditional probabilities for a category of an outcome has a relation with shape-invariant model. We use a linear mixed model for transformation of the time and response scales to fit the individual curves. It is demonstrated when the parameters can be modelled by a linear mixed model, the inference on the parameters can proceed as if shape function were a known regression function. The population time curve is modeled with a penalized regression spline. As an application, the severity of genito-urinary toxicity is assessed for prostate cancer patients who were given different doses of radiation. The ordinal responses (severity of side effects) are recorded longitudinally along with the cancer stage of a patient. We focus on the question of whether the dose level of radiation affects the severity of genito-urinary toxicity, which is a side effect of radiation therapy. Since there is often the censoring in the medical data, we also proposed the use of the longitudinal model of self-modeling based on the right censoring. In a post-surgical recovery study, the dose of anesthesia affects the recovery. In particular, we investigate the interaction between the dose effect and time to follow-up. In a medical study, patients with various stages of illness may be cured or the stage of their illness be changed after treatment. We demonstrate a new cure model with several stages of cured or uncured patients instead of the common cure model with two stages. The model allocates probability of these stages by self-modeling ordinal regression precisely. Schizophrenia as a mental illness can come in various forms with different symptoms and outcomes. We considered the effect of four medications on schizophrenia patients in the cure model. In the end, we used Self-Modeling binary model in the accelerated hazards mixture cure model with random effects such that the extended model can be applied to the time of occurrence of an event. We apply the model to the respiratory illness data set. Monte Carlo expectation maximization technique is used to estimate the parameters of the model. Simulation studies are also carried out to justify the methodologies used
Subject: Estatística não paramétrica
Spline, Teoria do
Estatística matemática - Estudos longitudinais
Modelos lineares (Estatistica)
Estatistica ordinal
Language: Inglês
Editor: [s.n.]
Date Issue: 2016
Appears in Collections:IMECC - Dissertação e Tese

Files in This Item:
File SizeFormat 
Mastanishirazi_Aliakbar_D.pdf1.13 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.