Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/321488
Type: TESE DIGITAL
Title: Líquidos polimórficos e transições de fases em líquidos confinados através de simulações atomísticas
Title Alternative: Liquid polymorphism and phase transition in confined liquids through atomistic simulations
Author: Cajahuaringa Macollunco, Oscar Samuel, 1985-
Advisor: Antonelli, Alex, 1954-
Abstract: Resumo: Apesar de serem substâncias muito diferentes, silício e gálio, na fase líquida, compartilham muitas anomalias nas suas propriedades termodinâmicas. Evidências teóricas e experimentais sugerem que esses líquidos podem sofrer a chamada transição de fase líquido-líquido (LLPT). Especula-se que este tipo de transição é acompanhada por uma transição dinâmica entre um líquido frágil e um líquido forte, com base nas hipóteses de que o surgimento de um "dip" na função auto-intermediária de espalhamento logo após o regime balístico e o aparecimento do excesso de modos vibracionais em baixas frequências após a LLPT estariam relacionados com o comportamento de líquidos fortes. Foi realizado um estudo da dinâmica desses sistemas através das funções de correlação nas vizinhanças da LLPT usando simulações clássicas. Observamos apenas no caso do silício o aparecimento do "dip" na função auto-intermediária de espalhamento. A densidade de estados vibracionais reduzida de ambos os líquidos apresenta picos em baixas frequências, sugerindo que ambos os líquidos seriam fortes. Desta forma, nos dois casos estudados, as duas hipóteses não são conclusivas. Visando um melhor entendimento, determinamos a viscosidade de cisalhamento de ambos os líquidos em um amplo intervalo de temperatura. A apresentação desses resultados no chamado gráfico de Angell, indica que, em ambos os casos, a LLPT é acompanhada de uma transição de um líquido frágil para um líquido menos frágil, o que não dá suporte às especulações de uma transição frágil-forte. Além de investigar a LLPT em gálio "bulk", foi também estudado o gálio líquido confinado em nanofendas, ou seja, um sistema quase-bidimensional. Foi observada a transição de fase de primeira ordem entre um líquido isotrópico e um líquido ordenado. Por meio de uma série de análises estruturais, tanto de ordem translacional quanto orientacional, conseguimos identificar o líquido ordenado como a fase hexática, que é prevista ocorrer em sistemas bidimensionais segundo a teoria de Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY). Como a LLPT em gálio bulk foi identificada em simulações de dinâmica clássica, realizamos um estudo visando obter evidência da LLPT em simulações de primeiros princípios, que são em princípio mais realísticas. Utilizando o chamado método-Z, que permite estimar a temperatura de fusão, determinamos que o regime super-resfriado do gálio líquido descrito por cálculos de primeiros princípios ocorre em temperaturas abaixo de 400 K. Partindo de um líquido em equilíbrio em 500 K, realizamos simulações a pressão constante igual a zero em que o líquido foi resfriado para 260 K em um intervalo de 145 ps. Não foi observada uma mudança abrupta no volume durante o resfriamento. A fim de melhorar a amostragem em nossas simulações de primeiros princípios, realizamos um estudo de dinâmica molecular a volume constante com troca de réplicas. Foram usadas um total de 10 réplicas entre 400 K e 260 K, em simulações com a duração de 100 ps. Neste caso, a pressão decresceu monotonicamente com a temperatura, o que é característico de líquidos simples que não sofrem LLPT. Cabe ressaltar que nas simulações clássicas que identificaram a LLPT em gálio, a taxa de resfriamento foi muito mais lenta, da ordem de nano-segundos, que seria inexequível para simulações de primeiros princípios

Abstract: Despite of being very different substances, silicon and gallium, in their liquid phase, share several anomalous thermodynamic properties. Theoretical and experimental evidence suggest that these liquids can undergo the so-called liquid-liquid phase transition (LLPT). There has been speculated that this transition is accompanied by a dynamic transition form a fragile liquid to a strong liquid, based on the hypothesis that the development of a dip in the self-intermediate scattering function, just after the ballistic regime, and the appearance of excess low frequency vibrational modes just after the LLPT would be related to the behavior of strong liquids. It was performed a study of the dynamics of these systems through the correlation functions in the vicinity of the LLPT using classical simulations. We observed the development of a dip in the self-intermediate scattering function only in the case o silicon. The reduced density of vibrational states of both liquids exhibits peaks in low frequencies, suggesting both liquids to be strong. Therefore, for the two cases we studied, the two hypotheses are not conclusive. In order to achieve a better understanding, we determined the shear viscosity of both liquids for a wide range of temperatures. By plotting the data in the so-called Angell plot one can see that, in both cases, the LLPT is accompanied by a transition of a fragile liquid to a less fragile liquid, which does not give support to the speculations of a fragile-to-strong transition. Aside from investigating the LLPT in bulk gallium, it was also studied liquid gallium confined in nanoslits. i.e., a quasi two-dimensional system. It was observed a first-order transition between an isotropic liquid and an ordered liquid. Through a series of structural analyses, both translational and orientational, we were able to identify the ordered liquid as the hexatic phase, which is predict to occur in two-dimensional systems according to the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory. Since the LLPT in gallium has been found in classical molecular dynamics simulations, we performed a study aimed to obtain evidence of the LLPT in first-principles simulations, which are, in principle, more realistic. Using the so-called Z-method, which allows one to estimate the melting temperature, we determined the supercooled regime of liquid gallium, described by first-principles, to occur below 400 K. Starting from an equilibrated liquid at 500 K, we performed simulations at zero pressure in which the liquid was cooled down to 260 K in an interval of 145 ps. No abrupt change in the volume was observed as the liquid was cooled. In order to improve sampling in our first-principles simulations, we performed a study using constant volume molecular dynamics with replica exchange. Ten replicas were used between 400 K and 260 K, in simulations 100 ps long. In this case, pressure decreased monotonically with temperature, which is the behavior of simple liquids, which do not exhibit the LLPT. It should be emphasized that in the classical simulations that identified the LLPT in gallium, the cooling rates were much slower, of the order of nanoseconds, which would be unfeasible for first-principles simulations
Subject: Transição de fase líquido-líquido
Dinâmica molecular
Líquidos confinados
Dinâmica molecular ab initio
Editor: [s.n.]
Date Issue: 2015
Appears in Collections:IFGW - Dissertação e Tese

Files in This Item:
File SizeFormat 
CajahuaringaMacollunco_OscarSamuel_D.pdf15.61 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.