Please use this identifier to cite or link to this item:
Type: Artigo de Periódico
Title: Surface Functionalization Of Two-dimensional Metal Chalcogenides By Lewis Acid-base Chemistry
Author: Lei
SD; Wang
XF; Li
B; Kang
JH; He
YM; George
A; Ge
LH; Gong
YJ; Dong
P; Jin
ZH; Brunetto
G; Chen
WB; Lin
ZT; Baines
R; Galvao
DS; Lou
J; Barrera
E; Banerjee
K; Vajtai
R; Ajayan
Abstract: Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid-base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti4+ to form planar p-type [Ti4+ (n)(InSe)] coordination complexes. Using this strategy, we fabricate planar p-n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B3+, Al3+ and Sn4+) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid-base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device.
Subject: P-n-junctions
Citation: Nature Nanotechnology. NATURE PUBLISHING GROUP, n. 11, n. 5, p. 465 - 471.
Rights: fechado
Identifier DOI: 10.1038/NNANO.2015.323
Date Issue: 2016
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000376163300018.pdf3.52 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.