Please use this identifier to cite or link to this item:
Type: Artigo
Title: Low false positive learning with support vector machines
Author: Moraes, Daniel
Wainer, Jacques
Rocha, Anderson
Abstract: Most machine learning systems for binary classification are trained using algorithms that maximize the accuracy and assume that false positives and false negatives are equally bad. However, in many applications, these two types of errors may have very dif
Subject: Algoritmos de computador
Máquina de vetores de suporte
Aprendizado de máquina
Country: Reino Unido
Editor: Elsevier
Citation: Journal Of Visual Communication And Image Representation. ACADEMIC PRESS INC ELSEVIER SCIENCE, n. 38, p. 340 - 350.
Rights: Fechado
Identifier DOI: 10.1016/j.jvcir.2016.03.007
Date Issue: 2016
Appears in Collections:IC - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000377149100029.pdf1.05 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.