Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/319770
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.identifier.isbn1522-2616pt
dc.contributor.authorunicampMarchesi, Simonept_BR
dc.typeArtigopt_BR
dc.titleTango bundles on grassmannianspt_BR
dc.contributor.authorCosta, Laurapt_BR
dc.contributor.authorMarchesi, Simonept_BR
dc.contributor.authorMiró-Roig, Rosa Mariapt_BR
unicamp.author.emailcosta@ub.edu; marchesi@ime.unicamp.br; miro@ub.edupt_BR
dc.subjectFibrados vetoriaispt_BR
dc.subjectGrassmann, Variedades dept_BR
dc.subject.otherlanguageVector bundlespt_BR
dc.subject.otherlanguageGrassmann manifoldspt_BR
dc.description.abstractThe goal of this paper is to prove the existence of indecomposable rank ((k + 1)(n-k) - (k + 1)) vector bundles on the Grassmannian variety Gr(k, n). We will call them Tango bundles since in the particular case of P-n congruent to Gr(0, n) they correspond to the celebrated vector bundle discovered by H. Tango in 1974. We will give a geometrical description of Tango bundles and we will prove that they are mu-stable. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimen
dc.description.abstractThe goal of this paper is to prove the existence of indecomposable rank ((k + 1)(n-k) - (k + 1)) vector bundles on the Grassmannian variety Gr(k, n). We will call them Tango bundles since in the particular case of P-n congruent to Gr(0, n) they correspondpt_BR
dc.relation.ispartofMathematische nachrichtenpt_BR
dc.relation.ispartofabbreviationMath. nachr.pt_BR
dc.publisher.cityWeinheimpt_BR
dc.publisher.countryAlemanhapt_BR
dc.publisherWileypt_BR
dc.date.issued2016pt_BR
dc.date.monthofcirculationjunept_BR
dc.identifier.citationMathematische Nachrichten. WILEY-V C H VERLAG GMBH, n. 289, n. 8, p. 950 - 961.pt_BR
dc.language.isoengpt_BR
dc.description.volume289pt_BR
dc.description.issuenumber8-9pt_BR
dc.description.issuesupplementpt_BR
dc.description.issuepartpt_BR
dc.description.issuespecialpt_BR
dc.description.firstpage950pt_BR
dc.description.lastpage961pt_BR
dc.rightsfechadopt_BR
dc.rightsfechadopt_br
dc.sourceWOSpt_BR
dc.identifier.issn0025-584Xpt_BR
dc.identifier.eissn1522-2616pt_BR
dc.identifier.wosidWOS:000377274800002pt_BR
dc.identifier.doi10.1002/mana.201500015pt_BR
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/full/10.1002/mana.201500015pt_BR
dc.description.sponsorshipFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOpt_BR
dc.description.sponsorship1Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)pt_BR
dc.description.sponsordocumentnumberMTM2013-45075-P; 2013/10063-0pt_BR
dc.date.available2016-12-06T18:29:24Z-
dc.date.accessioned2016-12-06T18:29:24Z-
dc.description.provenanceMade available in DSpace on 2016-12-06T18:29:24Z (GMT). No. of bitstreams: 1 000377274800002.pdf: 324924 bytes, checksum: 7734a999ebf8b246a1b6ba858e285f6f (MD5) Previous issue date: 2016 Bitstreams deleted on 2021-01-04T14:26:11Z: 000377274800002.pdf,. Added 1 bitstream(s) on 2021-01-04T14:27:14Z : No. of bitstreams: 1 000377274800002.pdf: 399442 bytes, checksum: 443434a1f0e843f3619d8da82bf3ecbc (MD5)en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/319770-
dc.description.conferencenomept_BR
dc.contributor.departmentDepartamento de Matemáticapt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.subject.keywordTango bundlespt_BR
dc.subject.keywordGrassmannianspt_BR
dc.identifier.source000377274800002pt_BR
dc.creator.orcid0000-0003-4371-601Xpt_BR
dc.type.formArtigo originalpt_BR
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000377274800002.pdf390.08 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.