Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/319770
Type: Artigo
Title: Tango bundles on grassmannians
Author: Costa, Laura
Marchesi, Simone
Miró-Roig, Rosa Maria
Abstract: The goal of this paper is to prove the existence of indecomposable rank ((k + 1)(n-k) - (k + 1)) vector bundles on the Grassmannian variety Gr(k, n). We will call them Tango bundles since in the particular case of P-n congruent to Gr(0, n) they correspond to the celebrated vector bundle discovered by H. Tango in 1974. We will give a geometrical description of Tango bundles and we will prove that they are mu-stable. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
The goal of this paper is to prove the existence of indecomposable rank ((k + 1)(n-k) - (k + 1)) vector bundles on the Grassmannian variety Gr(k, n). We will call them Tango bundles since in the particular case of P-n congruent to Gr(0, n) they correspond
Subject: Fibrados vetoriais
Grassmann, Variedades de
Country: Alemanha
Editor: Wiley
Citation: Mathematische Nachrichten. WILEY-V C H VERLAG GMBH, n. 289, n. 8, p. 950 - 961.
Rights: fechado
fechado
Identifier DOI: 10.1002/mana.201500015
Address: https://onlinelibrary.wiley.com/doi/full/10.1002/mana.201500015
Date Issue: 2016
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000377274800002.pdf390.08 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.