Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/319526
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE DE ESTADUAL DE CAMPINASpt_BR
dc.typeArtigo de periódicopt_BR
dc.titleAn Averaging Principle For Diffusions In Foliated Spacespt_BR
unicamp.author.emailconnie.muv@gmail.compt_BR
unicamp.authorKersch-Becker, M.F., Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States, Departamento de Biologia Animal (IB), Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas, SP, Brazilpt_BR
unicamp.author.externalTjiurutue, M.C., Biology Department, University of Massachusetts Amherst, 221 Morrill Science Center South, 611 North Pleasant Street, Amherst, MA, United Statespt
unicamp.author.externalSandler, H.A., UMass Cranberry Experiment Station, 1 State Bog Rd, P.O Box 569, East Wareham, MA, United Statespt
unicamp.author.externalTheis, N., Department of Biological Sciences, Elms College, 203 Berchmans Hall, Chicopee, MA, United Statespt
unicamp.author.externalAdler, L.A., Biology Department, University of Massachusetts Amherst, 221 Morrill Science Center South, 611 North Pleasant Street, Amherst, MA, United Statespt
dc.description.abstractConsider an SDE on a foliated manifold whose trajectories lay on compact leaves. We investigate the effective behavior of a small transversal perturbation of order e. An average principle is shown to hold such that the component transversal to the leaves converges to the solution of a deterministic ODE, according to the average of the perturbing vector field with respect to invariant measures on the leaves, as ε goes to zero. An estimate of the rate of convergence is given. These results generalize the geometrical scope of previous approaches, including completely integrable stochastic Hamiltonian system. © Institute of Mathematical Statistics, 2016.en
dc.relation.ispartofAnnals of Probabilitypt_BR
dc.publisherInstitute of Mathematical Statisticspt_BR
dc.date.issued2016pt_BR
dc.identifier.citationAnnals Of Probability. Institute Of Mathematical Statistics, v. 44, p. 567 - 588, 2016.pt_BR
dc.language.isoenpt_BR
dc.description.volume44pt_BR
dc.description.issuenumberpt_BR
dc.description.firstpage567pt_BR
dc.description.lastpage588pt_BR
dc.rightsabertopt_BR
dc.sourceScopuspt_BR
dc.identifier.issn00911798pt_BR
dc.identifier.doi10.1214/14-AOP982pt_BR
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84958214243&partnerID=40&md5=185f831e9139e78a9a227e00579f6b63pt_BR
dc.date.available2016-12-06T17:44:16Z-
dc.date.accessioned2016-12-06T17:44:16Z-
dc.description.provenanceMade available in DSpace on 2016-12-06T17:44:16Z (GMT). No. of bitstreams: 1 2-s2.0-84958214243.pdf: 210970 bytes, checksum: 3a70a207ac9a748344441fa94f3fa372 (MD5) Previous issue date: 2016en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/319526-
dc.identifier.idScopus2-s2.0-84958214243pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
2-s2.0-84958214243.pdf206.03 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.