Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/319332
Type: Artigo de periódico
Title: Solid-vapor Reaction Growth Of Transition-metal Dichalcogenide Monolayers
Abstract: Two-dimensional (2D) layered semiconducting transition-metal dichalcogenides (TMDCs) are promising candidates for next-generation ultrathin, flexible, and transparent electronics. Chemical vapor deposition (CVD) is a promising method for their controllable, scalable synthesis but the growth mechanism is poorly understood. Herein, we present systematic studies to understand the CVD growth mechanism of monolayer MoSe2, showing reaction pathways for growth from solid and vapor precursors. Examination of metastable nanoparticles deposited on the substrate during growth shows intermediate growth stages and conversion of non-stoichiometric nanoparticles into stoichiometric 2D MoSe2 monolayers. The growth steps involve the evaporation and reduction of MoO3 solid precursors to sub-oxides and stepwise reactions with Se vapor to finally form MoSe2. The experimental results and proposed model were corroborated by abinitio Car-Parrinello molecular dynamics studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Editor: Wiley-VCH Verlag
Rights: fechado
Identifier DOI: 10.1002/anie.201604445
Address: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84980383752&partnerID=40&md5=4c79a2b35c767fb6cb81616db9e5e951
Date Issue: 2016
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
2-s2.0-84980383752.pdf3.5 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.