Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/317020
Type: TESE
Title: Otimização da produção de butanol por cepas de Clostridium spp. utilizando hidrolisado lignocelulósico
Title Alternative: Optimization of butanol production by strains of Clostridium ssp. using lignocellulosic hydrolysate
Author: Magalhães, Beatriz Leite, 1991-
Advisor: Brocchi, Marcelo, 1967-
Abstract: Resumo: Atualmente, o maior desafio da indústria de biotecnologia é a produção de combustíveis e compostos de interesse petroquímico, a partir de fontes renováveis, de forma economicamente viável. Dentre estes compostos destaca-se o butanol, um importante precursor químico industrial e com potencial para ser utilizado como combustível. O butanol pode ser produzido a partir de derivados de petróleo ou naturalmente por fermentação de espécies de clostrídio solventogênicas. Este processo fermentativo apresenta como principais produtos acetona, butanol e etanol (ABE), sendo, por isso, conhecido como fermentação ABE. Atualmente, a prática da fermentação ABE em escala industrial apresenta como principais obstáculos o alto custo dos substratos utilizados como matéria-prima e o seu baixo desempenho fermentativo. Neste contexto, o uso de hidrolisado de palha de cana-de-açúcar, um substrato considerado abundante e barato, poderia resolver em parte o problema da viabilidade econômica da fermentação ABE. Porém, para a geração deste hidrolisado, sua fonte de material lignocelulósico deve passar por duas etapas: pré-tratamento e hidrólise. Após este processamento, o hidrolisado gerado se caracteriza por ser uma mistura de hexoses e pentoses, mas também de inibidores de crescimento, o que representa um empecilho para a utilização deste material em uma fermentação. Assim, a busca e seleção de micro-organismos capazes de metabolizar diferentes açúcares e que sejam tolerantes aos inibidores presentes no hidrolisado, é visto como uma estratégia sustentável e barata para viabilizar a utilização de hidrolisados lignocelulósicos para a produção de químicos e combustíveis. Nesse contexto, este projeto visou o estabelecimento de uma condição onde fosse possível a produção microbiológica de n-butanol, a partir de hidrolisado lignocelulósico, com alto rendimento e produtividade. Para isso, o projeto contemplou a seleção de linhagens potenciais, o que resultou na escolha duas linhagens: Clostridium saccharoperbutylacetonicum DSM 14923, devido a sua alta produção de butanol, e Clostridium saccharobutylicum DSM 13864, por mostra-se capaz de co-fermentar glicose e xilose e apresentar maior robustez aos inibidores presentes no hidrolisado lignocelulósico. Além disso, foi realizada a otimização do meio e forma de cultivo para a obtenção de uma maior tolerância aos inibidores dos hidrolisados lignocelulósicos. Através desta abordagem, foi possível atingir uma melhora de 8 e 3,3 vezes na produção de butanol pelas linhagens C. saccharoperbutylacetonicum e C. saccharobutylicum, respectivamente. Além disso, com este meio otimizado foi possível a realização do cultivo das linhagens em maiores concentrações de hidrolisado. Por meio de ensaios fermentativos determinou-se que a linhagem C. saccharobutylicum DSM 13864 se destaca pela sua melhor performance em hidrolisado lignocelulósico, apresentando alto consumo de açúcar inclusive em altas concentrações deste substrato, sendo portanto a linhagem mais adequada para a fermentação neste substrato. Por outro lado, a concentração de butanol produzida ainda tem muito para ser melhorada indicando que o metabolismo desta linhagem em hidrolisado lignocelulósico precisa ser melhor compreendido. Ao final do trabalho, além da indicação da linhagem e o meio de cultivo otimizado para a produção de n-butanol a partir de hidrolisado lignocelulósico, geraram-se dados e resultados básicos que poderão ser empregados na produção de butanol em escala industrial

Abstract: Nowadays the production of fuels and petrochemical compounds from renewable sources with high yield and productivity is one of the biggest challenges of the biotechnology industry. Among these petrochemical compounds, butanol stands out as an important industrial chemical and because of its potential to be used as an alternative fuel. Butanol can be produced either from petroleum derivatives, as naturally by anaerobic fermentation using solventogenic clostridia. This fermentation process is known as ABE fermentation because it has as main products acetone, butanol and ethanol (ABE). Currently, the main obstacles to butanol production on industrial scale are the high cost of substrates and the low fermentation performance. In this context, the use of hydrolysate from sugarcane straw, considered an abundant and cheap substrate, could solve in part the problem of the economic viability of the ABE fermentation. However, for the generation of this hydrolyzate, the row material needs a pre-treatment step followed by hydrolysis. After this processing, the generated hydrolyzate is characterized by being a mixture of hexoses and pentoses sugars and by the presence of certain inhibitors of growth, which represents an obstacle to the use of this material in a fermentation. Thus, the search and selection of microorganisms able to metabolize different sugars and tolerant or resistant to the inhibitors present in the hydrolyzate, is seen as an inexpensive and sustainable strategy to enable the use of lignocellulosic hydrolyzates as feedstock for the production of biochemicals and biofuels. Then, the project had as aim the establishment of a condition where the microbiological production of n-butanol is possible, from lignocellulosic hydrolysate, with high yields and productivities. To achieve this objective, the project contemplated the screening of potential strains, resulting in the selection of strains: Clostridium saccharoperbutylacetonicum DSM 14923, outlined by its high butanol production, and Clostridium saccharobutylicum DSM 13864, outlined by its capacity of co-fermenting glucose and xylose. In addition, it was performed the culture medium optimization to obtain a greater tolerance to lignocellulosic hydrolyzate. Through this approach, it was possible to achieve 8 and 3.3-fold improvement in the production of butanol by the strains C. saccharoperbutylacetonicum and C. saccharobutylicum, respectively. Moreover, with this optimized medium, it was possible to perform the cultivation of these strains in higher concentrations of lignocellulosic hydrolysates. Through fermentation tests, it was determined that C. saccharobutylicum DSM 13864, among the others strains tested, has the best performance in lignocellulosic hydrolyzate, with a high sugar consumption even at high concentrations of these substrate, being the most suitable strain for the fermentation at this substrate. On the other hand, the concentration of butanol produced still can be improved, indicating that much remains to be elucidated about the metabolism of this strain in lignocellulosic hydrolyzate. At the end of the work, in addition of the optimization of the culture cultivation and the indication of the most adequate strain for fermentation in lignocellulosic hydrolysates, all the data and basic results generated can be used for the butanol production on industrial scale
Subject: Clostridium
Butanol
Cana-de-açúcar
Hidrólise
Lignocelulose - Biotecnologia
Editor: [s.n.]
Date Issue: 2015
Appears in Collections:IB - Tese e Dissertação

Files in This Item:
File SizeFormat 
Magalhaes_BeatrizLeite_M.pdf10.16 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.