Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/316418
Type: TESE
Degree Level: Doutorado
Title: Trafego intracelular de vetores não-virais = desenvolvimento de proteínas de fusão para transporte de DNA plasmidial através da interação com proteínas motoras = Intracelullar traffic of non-viral vectors: development of recombinant fusion proteins to mediate plasmidial DNA transport by interaction with motor proteins
Title Alternative: Intracelullar traffic of non-viral vectors : development of recombinant fusion proteins to mediate plasmidial DNA transport by interaction with motor proteins
Author: Toledo, Marcelo Augusto Szymanski de, 1987-
Advisor: Azzoni, Adriano Rodrigues, 1971-
Abstract: Resumo: Apesar de seguros e simples de produzir, o uso de vetores não virais como o DNA plasmidial (DNAp) em estudos de terapia gênica e vacinação por DNA tem sido limitado pela baixa eficiência quando comparados aos vetores virais. Essa limitação provém principalmente da reduzida capacidade de superar as barreiras físicas, enzimáticas e difusionais encontradas durante o tráfego intracelular para o interior do núcleo das células alvo. Dentro deste contexto, o presente trabalho demonstra a utilização de cadeias leves modificadas de Dineína (Lc8 e Rp3) como vetores não-virais de entrega gênica. A escolha de cadeias leves de Dineína justifica-se pela possibilidade de utilizar o transporte retrógrado celular mediado por complexos motores de Dineína para facilitar o tráfego de material genético exógeno através do citoplasma em direção à periferia nuclear. Através da adição de pequenos domínios peptídicos, ricos em aminoácidos polares positivos (arginina e lisina), ao N-terminal de cadeias leves de Dineína foi possível conferir a estas proteínas a habilidade de interagir com material genético condensando-o em partículas. Ensaios de transfecção demonstraram que tais partículas apresentam elevada eficiência de entrega do material genético exógeno ao núcleo de células HeLa, eficiência esta superior àquela apresentada pelo peptídeo protamina, amplamente estudado como vetor não-viral de entrega gênica. A formação de complexos ternários utilizando-se DNA plasmidial, cadeias leves de Dineína modificadas e lipídios catiônicos apresentou eficiência de entrega superior àquelas apresentadas na ausência do lipídio. Adicionalmente, complexos de entrega formados apenas com DNA plasmidial e cadeias leves de Dineína modificadas apresentaram baixo efeito citotóxico em células HeLa, característica esta de grande relevância uma vez que a toxicidade dos vetores de entrega gênica atua como importante fator limitante em sua aplicação clínica. O mecanismo envolvido no processo de entrega gênica mediado por cadeias leves de Dineína modificadas também foi estudado, podendo ser observado que (1) a entrada dos complexos de entrega na célula é altamente dependente do processo de endocitose, (2) a eficiência de entrega observada depende da rede de microtúbulos e (3) parte significativa dos complexos de entrega é degradada na via de endossoma/lisossomo celular. Os vetores não-virais de entrega gênica descritos no presente estudo associam elevada eficiência de transfecção, baixa toxicidade celular e relativo baixo custo de produção, uma vez que as cadeias leves de Dineína recombinantes são produzidas em sistema heterólogo utilizando-se Escherichia coli. Ressalta-se ainda a possibilidade de adição de novos domínios peptídicos às cadeias leves de Dineína modificadas, agregando novas funções/capacidades que poderiam resultar em maior eficiência de entrega gênica através da otimização dos processos de internalização celular ou escape endossomal. A abordagem de se utilizar a via de transporte retrógrado celular para o desenvolvimento de vetores não-virais para entrega gênica é pouco explorada pela comunidade científica e o presente estudo apresenta-se entre os poucos da área, esperando assim contribuir para o desenvolvimento de vetores não-virais mais eficientes e seguros

Abstract: The use of non viral vectors such as plasmidial DNA (pDNA) in gene therapy and DNA vaccination protocols has been limited due to its low transfection efficiency when compared to viral vectors. This limitation occurs mainly due to the physical, enzymatic and diffusion barriers faced during the transport of the genetic material to the nucleus of target eukaryotic cells. Regarding this subject, the present work demonstrates the feasibility of using modified Dynein light chains (Lc8 and Rp3) as non viral vectors for gene delivery. The use of Dynein light chains relies on the possibility to exploit the Dynein based cellular retrograde transport in order to improve the exogenous genetic material transport across the citosol towards the nuclear periphery. By adding small peptide domains, based in positively charged aminoacids (arginine and lysine) to the N-terminal of Dynein light chains, the resulting recombinant proteins were able to interact and condense genetic material into delivery particles. Transfection assays demonstrated that these particles are highly efficient to delivery plasmidial DNA to nucleus of HeLa cells when compared to the transfection efficiency presented by protamine, a well characterized non viral vector peptide. Ternary complexes formed by modified Dynein light chains, pDNA and a cationic lipid showed even higher transfection efficiency. Additionally, the light chain based non viral delivery vectors presented low citotoxic effect to HeLa cells, a valuable feature as toxicity is regarded as one of the main concerns on delivery vectors development. The mechanism by which the modified Dynein light chain based vectors mediates gene delivery was also investigated and we could observe that (1) the internalization process deeply relies on endocytosis, (2) it depends on the microtubule network and (3) a significant fraction of the delivery complexes are trapped and degraded in the endocytic pathway. The non viral vectors developed in the present study combine high transfection efficiency, low toxicity and relative low production cost, as all modified proteins were produced in Escherichia coli prokaryotic host. Its noteworthy that additional peptide domains can be further associated to the delivery vectors described providing it with new abilities such as higher internalization or endosomal escape capacity. The approach to use the cellular retrograde transport in order to develop non viral vectors is poorly exploited by the scientific community and the present study stands among few in the field hopefully contributing to the development of more efficient and safer non viral vectors for gene delivery
Subject: Entrega gênica
Dineínas
Transfecção
Terapia genética
Plasmideos
Language: Multilíngua
Editor: [s.n.]
Date Issue: 2013
Appears in Collections:IB - Tese e Dissertação

Files in This Item:
File SizeFormat 
Toledo_MarceloAugustoSzymanskide_D.pdf15.29 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.