Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/307619
Type: TESE DIGITAL
Title: Empacotamento de círculos usando otimização não linear
Title Alternative: Circle packing using nonlinear optimization
Author: Bortolete, Juliano Cavalcante, 1982-
Advisor: Bueno, Luís Felipe Cesar da Rocha, 1983-
Abstract: Resumo: Este trabalho procura discutir, através de uma abordagem didática, conceitos relacionados à otimização não linear. Primeiramente, consideramos problemas de otimização irrestrita e ressaltamos a relação entre encontrar raízes de sistemas e pontos estacionários. Em um segundo momento, apresentamos parte da teoria que pertence ao escopo da otimização restrita. Neste caso, estudamos problemas em que o conjunto viável é determinado por restrições lineares de igualdade para, a partir disto, estudar alguns problemas com restrições não lineares. Concluindo esta etapa, o Método do Lagrangiano Aumentado é apresentado como uma evolução do Método de Penalidades. Para ilustrar uma das possíveis aplicações da teoria estudada, recorremos aos problemas de empacotamento. Especificamente estudamos alguns problemas de empacotamento em contêineres simples, para então estudar empacotamentos em regiões delimitadas por quádricas. Por fim, empreendemos uma análise com o intuito de verificar a possibilidade de aplicar a técnica usada no caso do empacotamento em quádricas à regiões delimitadas por quárticas. Neste caso, foi possível constatar que esta adaptação não é simples

Abstract: This dissertation intends to discuss some non-linear optimization concepts by means of a didactic approach. First, we consider unconstrained optimization problems and we emphasize the relationship between finding roots of systems and how to obtain stationary points. In a second step, we present part of the theory that belongs to the scope of constrained optimization. In this case, we study problems where the feasible set is determined by linear equality constraints and later we deal with non-linear constraints. Completing this step, the Augmented Lagrangian Method is presented as an evolution of the Penalty Method. To illustrate one of the possible applications of the studied theory, we resorted to packing problems. Specifically we studied some packing problems in simple containers, for then study packings in regions bounded by quadric surficies. Finally, we undertook an analysis in order to verify the possibility of applying the same technique used in the quadric case also in the case of packaging in regions defined by quartics. We found that such adjustment is not simple
Subject: Otimização não-linear
Problemas de empacotamento
Otimização matemática
Editor: [s.n.]
Date Issue: 2016
Appears in Collections:IMECC - Dissertação e Tese

Files in This Item:
File SizeFormat 
Bortolete_JulianoCavalcante_M.pdf5.41 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.