Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/307543
Type: TESE
Title: Teoria de Conley para campos Gutierrez-Sotomayor
Title Alternative: Conley theory for Gutierrez-Sotomayor vector fields
Author: Montúfar López, Hernán Roberto
Advisor: Rezende, Ketty Abaroa de, 1959-
Abstract: Resumo: Em [6] são apresentadas condições necessárias e suficientes para a estabilidade estrutural e o teorema de densidade para campos de vetores em 2-variedades com singularidades simples dos seguintes tipos: cone, guarda-chuva de Whitney, ponto duplo e ponto triplo. Nesta tese, estudamos os fluxos induzidos por estes campos de vetores, que denominamos fluxos Gutierrez-Sotomayor, do ponto de vista topológico utilizando a teoria de Conley. Apresentamos uma fórmula dinâmico-topológica que relaciona o índice de Conley de uma variedade com singularidades simples M que possui uma estratificação que a decompõe numa união disjunta da sua parte regular e da sua parte singular. Usando essa estratificação mostramos que se a singularidade está na parte singular S de M o seu índice pode ser calculado tanto com respeito a M como com respeito a S. Definimos uma função de Lyapunov, neste contexto, e mostramos sua existência para fluxos sem órbitas periódicas e sem ciclos singulares. Em seguida, por uma análise da seqüência de homologia longa exata de um par índice determinamos propriedades que um grafo de Lyapunov deve satisfazer para estar associado a um fluxo. Também abordamos a questão da realização de grafos de Lyapunov abstratos. Para isto, primeiramente apresentamos a igualdade de Poincaré-Hopf, para o caso bidimensional, que caracteriza a relação entre o primeiro número de Betti das 1-variedades ramificadas que são fronteiras de um bloco isolante com seu número de componentes de fronteira e o índice numérico de Conley. Em seguida, mostramos que dados números inteiros positivos que satisfaçam a condição de Poincaré-Hopf sempre é possível construir um bloco isolante que satisfaz estes dados dinâmicos e homológicos

Abstract: In [6] a characterization and genericity theorem for C1-structurally stable vector fields tangent to a 2-dimensional compact subset M of Rk are established. Also in [6], new types of structurally stable singularities and periodic orbits are presented. In this thesis we study the continuous flows associated to these vector fields, which we refer to as the Gutierrez-Sotomayor flows on manifolds M with simple singularities using Conley Index Theory. We consider a stratification of M which decomposes it into a union of its regular and singular strata. We prove certain Euler type formulas which relate topology of M and dynamics on the singular strata. We show the existence of a Lyapunov function for Gutierrez-Sotomayor flows without periodic orbits and singular cycles in this context. Using long exact sequence analysis of index pairs we determine necessary and sufficient conditions for a Gutierrez-Sotomayor flow to be defined on an isolating block. We organize this combinatorially with the aid of Lyapunov graphs and using a Poincar'e-Hopf equality we give necessary conditions for a Lyapunov graph to be associated to a Gutierrez-Sotomayor flow and we also prove these conditions are sufficient
Subject: Singularidades (Matemática)
Lyapunov, Funções de
Conley, Teoria do índice de
Blocos isolantes
Language: Português
Editor: [s.n.]
Date Issue: 2010
Appears in Collections:IMECC - Tese e Dissertação

Files in This Item:
File SizeFormat 
MontufarLopez_HernanRoberto_D.pdf7.83 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.