Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/307475
Type: TESE
Title: Metodos de lagrangiano aumentado com convergencia utilizando a condição de dependencia linear positiva constante
Title Alternative: Augumented lagrangian methods with convergence under the constant positive linear dependence condition
Author: Schuverdt, Maria Laura
Advisor: Martínez Pérez, José Mario, 1948-
Martinez, Jose Mario
Abstract: Resumo: Condições de qualificação são ferramentas úteis na análise de convergência de métodos de otimização. Neste trabalho provamos que a nova condição de dependência linear positiva constante (CPLD) é uma condição de qualificação e mostramos que ela é mais fraca que condições clássicas, como regularidade, Mangasarian- Fromovitz e posto constante. Além disso, apresentamos um algo ritmo de Lagrangiano aumentado para resolver problemas gerais de programação matemática com convergência utilizando a CPLD. O algo ritmo proposto é definido para resolver problemas com dois conjuntos de restrições: um, mais complexo, formado pelas restrições que são penalizadas e, outro, mais simples, pelas restrições que são satisfeitas por todos os iterados gerados no processo. O resultado de convergência global estabelece que se um ponto limite da seqüência gerada pelo algoritmo satisfaz a condição CPLD então esse ponto é um ponto estacionário do problema original. O resultado de convergência global obtido é mais forte que resultados de convergência para problemas mais específicos obtidos utilizando condições de qualificação mais fortes, como a regularidade. Indicamos também as hipóteses adequadas sob as quais obtemos limitação do parâmetro de penalidade. A confiabilidade do algo ritmo foi testada mediante uma exaustiva comparação com o algoritmo LANCELOT, mostrando que nosso método é mais robusto e eficiente. Além disso, e como aplicação do nosso algoritmo no caso em que restrições diferentes são incorporadas no problema, apresentamos a resolução de problemas de alocação nos quais existem muitas restrições não-lineares no conjunto complexo. Utilizando o método de Gradiente Projetado Espectral mostramos que problemas desse tipo com muitas variáveis e restrições são resolvidos de maneira eficiente num tempo razoável

Abstract: Contraint qualifications are useful tools in the convergence analysis of optimization methods. In this work we prove that the new constant positive linear dependence condition (CPLD) is a constraint qualification and we show that it is weaker than classic constraint qualifications, like the regularity, the Mangasarian-Fromovitz and the constant rank conditions. Moreover, we introduce an augmented Lagrangian algorithm for solving general nonlinear programming problems whose convergence result uses the CPLD condition. The proposed algorithm is developed for problems with two sets of constraints: a complex one, formed by the penalized constraints and a simple one, formed by the constraints that are verified for all the iterates generated along the process. The global convergence result establishes that if a limit point of the sequence generated by the algorithm satisfies the CPLD condition then this point is a stationary point of the original problem. Thus, the global convergence result is stronger than the previous results for more specific problems obtained using stronger constraint qualification, as the regularity. We also indicate suitable conditions under which we prove boundedness of the penalty parameter. The reliability of the approach was tested by means of an exhaustive comparison against LANCELOT, demonstrating that our method is more robust and efficient. Moreover, as an application of our algorithm when different constraints are incorporated, we introduce the resolution of Location Problems in which there exist many nonlinear constraints in the complex set. We show that, employing the Spectral Projected Gradient method for solving the subproblems, this class of problems with many variables and constraints is efficiently solved with moderate computational effort
Subject: Programação não-linear
Algoritmos
Otimização matemática
Language: Português
Editor: [s.n.]
Date Issue: 2006
Appears in Collections:IMECC - Dissertação e Tese

Files in This Item:
File SizeFormat 
Schuverdt_MariaLaura_D.pdf1.57 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.