Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/307389
Type: TESE
Title: Efeito de localização para as equações estacionarias classicas de Boussinesq em um canal
Title Alternative: Localization effect for the classic stationary Boussinesq equations in a channel
Author: Nascimento, Clair do
Advisor: Boldrini, José Luiz, 1952-
Abstract: Resumo: Consideramos o fluxo de um fluido viscoso e incompressível em um canal bidimensional semi-infinito, dadas velocidade e temperatura possivelmente nao nulas na entrada deste canal. Assumindo que este fluido e governado pelas equações estacionarias classicas de Boussinesq, sob hipoteses adequadas sobre as condições de fronteira, mostramos que pela aplicação de certas forças sublineares (que dependendem da velocidade e da temperatura do fluido) é possíivel parar o fluxo a uma distancia finita da entrada do canal. Mais especificamente, a uma distancia finita da entrada do canal a velocidade e a temperatura do fluido se anulam e assim temos o chamado efeito de localização (ou que a solução e localizada). Este trabalho e feito em duas etapas. Primeiramente, usando um argumento de ponto fixo com o auxilio do teorema de Leray-Schauder, mostramos a existencia de uma solução fraca. Na segunda etapa provamos que tal solução é localizada usando estimativas do tipo energia adequadas similares aquelas utilizadas por Bernis. Devido ao fato de que o nosso dominio (o canal) é ilimitado, por razões tecnica, as etapas anteriores são feitas primeiramente considerando soluções aproximadas em dominios limitados obtidos pelo truncamento do canal; o resultado desejado 'e então obtido tomando o limite destas soluções aproximadas usando cuidadosamente que certas estimativas são uniformes com respeito a tais dominios truncados.

Abstract: We consider the flow of an incompressible viscous fluid in a bidimensional semi-infinity strip, given possible non-zero velocities and temperatures at the strip entrance. Assuming that flow is governed by the Boussinesq classic stationary equations, under suitable hypotheses on the boundary conditions, we show that by applying certain sub-linear forces (depending of velocity and temperature) it is possible to stop the flow at a finite distance of the strip entrance. More specifically, at finite distance of the strip entrance, the velocity and temperature become zero, and thus we have what is called the localization effect (or that the solution is localized). This work is done in two stages. First, by using a fixed point argument with help of Leray-Schauder theorem, we show the existence of a weak solution of the system of equations describing the flow. Second, we proof that such solution is localized by using suitable energy estimates similar to those used by Bernis. Due the fact our domain, the strip, is unbounded, for technical reasons the previous stages are firstly done by considering associated approximate solutions on bounded domains, obtained by truncation of the strip; the desired result is obtained by taking the limit of these approximate solutions by using carefully that some estimates are uniform with respect to such truncated strips.
Subject: Efeito de localização
Equações diferenciais não-lineares
Equações diferenciais
Navier-Stokes, Equações de
Language: Português
Editor: [s.n.]
Date Issue: 2009
Appears in Collections:IMECC - Dissertação e Tese

Files in This Item:
File SizeFormat 
Nascimento_Clairdo_D.pdf798.34 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.