Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/307350
Type: TESE
Title: n-Larguras de conjuntos de funções suaves sobre a esfera 'S POT. d'
Title Alternative: n-Widths of sets of smooth functions on the sphere 'S POT. d'
Author: Stábile, Régis Leandro Braguim, 1985-
Advisor: Kushpel, Alexander, 1958-
Abstract: Resumo: O objetivo principal da dissertação é realizar um estudo sobre estimativas de n-larguras de conjuntos de funções suaves sobre a esfera unitária d-dimensional real. Esses conjuntos são gerados por operadores multiplicadores. Outro objetivo é desenvolver um texto em português sobre as n-larguras mais importantes, suas propriedades e suas relações. Este objetivo é realizado no primeiro capítulo. No segundo capítulo é realizado um estudo rápido e com poucas demonstrações sobre Análise Harmônica na esfera d-dimensional real. No terceiro capítulo são estudadas estimativas de médias de Levy para uma classe de normas especiais e em seguida esses resultados são aplicados no estudo de estimativas inferiores para as n-larguras de Kolmogorov e Gel'fand e superiores para a de Kolmogorov, para operadores multiplicadores gerais. No quarto e último capítulo são estudadas estimativas para n-larguras de conjuntos de funções suaves, finitamente e infinitamente diferenciáveis sobre a esfera. Várias dessas estimativas são assintoticamente exatas em termos de ordem e as constantes que determinam a ordem dessas estimativas são determinadas explicitamente.

Abstract: The purpose of this work is to study estimates of n-widths of sets of smooth functions on the d-dimensional real unitary sphere. These sets are generated by multipliers operator. Another aim is to develop a text in portuguese about the most important n-widths, your properties and relations. We do this in the first chapter. In the second chapter, we develop a brief and proof-less study about Harmonic Analysis on the d-dimensional real unitary sphere. In the third chapter, the Levy means for a class of special norms are studied and applied in the study of lower estimates for the Kolmorogov and Gel'fand's n-widths, and upper estimates for the Kolmorogov's, for general multipliers operators. In the fourth and last chapter, the estimates for the n-widths of sets of smooth functions, finitely and infinitely differentiables on the sphere are studied. Several of these estimates are asymptotically exacts in terms of order and the constants that determine the order of these estimatives are given in a explicit form.
Subject: n-Larguras
Análise harmônica
Teoria da aproximação
Multiplicadores (Análise matemática)
Language: Português
Editor: [s.n.]
Date Issue: 2009
Appears in Collections:IMECC - Dissertação e Tese

Files in This Item:
File SizeFormat 
Stabile_RegisLeandroBraguim_M.pdf841.32 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.