Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306783
Type: TESE
Title: Equigeodésicas e aplicações equiharmônicas em variedades flag generalizadas
Title Alternative: Equigeodesics and equiharmonic maps on generalized flag manifolds
Author: Grama, Lino Anderson da Silva, 1981-
Advisor: Negreiros, Caio José Colletti, 1955-
Abstract: Resumo: O principal objetivo deste trabalho é o estudo de aplicações harmônicas em variedades flag generalizadas. Na primeira parte do trabalho, consideramos aplicações cujo domínio é uma superfície de Riemann. Provamos que toda aplicação holomorfa-horizontal na variedade flag é uma aplicação equiharmônica (ie, harmônica com respeito a cada métrica invariante na variedade flag). Obtemos também as fórmulas de Plucker para curvas holomorfa-horizontais na variedade flag maximal. Na segunda parte do trabalho, consideramos aplicações harmônicas cujo domínio possui dimensão 1 ( ie, geodésicas) na variedade flag. Provamos que toda variedade ag generalizada admite curvas que são geodésicas com respeito a cada métrica invariante. Tais curvas são chamadas equigeodésicas. Fornecemos uma descrição algébrica para tais curvas e exibimos famílias de equigeodésicas em diversas famílias de variedades flag

Abstract: The main goal of this work is the study of harmonic maps in generalized flag manifolds. In the first part of the work, we consider maps whose domain is a Riemann surface. We prove that every holomorphic-horizontal map in the flag manifold is an equiharmonic map (i.e. harmonic with respect to each invariant metric in the flag manifold). We also obtain the Plucker formulae for holomorphic-horizontal curves in full flag manifolds. In the second part of the work, we consider harmonic maps whose domain has dimension one (i.e. geodesics) in the ag manifold. We prove that every generalized flag manifold admit curves that are geodesics with respect to each invariant metric. Such curves are called equigeodesics. We provide an algebraic characterization for such curves and exhibit families of equigeodesics in several families of flag manifolds
Subject: Lie, Grupos de
Lie, Álgebra de
Espaços homogêneos
Mapas harmônicos
Geodésia (Matemática)
Language: Português
Editor: [s.n.]
Date Issue: 2011
Appears in Collections:IMECC - Dissertação e Tese

Files in This Item:
File SizeFormat 
Grama_LinoAndersondaSilva_D.pdf1.09 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.