Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306613
Type: TESE
Title: Reticulados e codigos
Title Alternative: Lattices and codes
Author: Alves, Carina
Advisor: Costa, Sueli Irene Rodrigues, 1949-
Abstract: Resumo: Neste trabalho abordamos questões associadas á minimização da probabilidade de erro para a transmissão de sinais em canais gaussianos e em canais com desvanecimento do tipo Rayleigh. Usando a teoria de reticulado ideal, construirmos rotações do reticulado n-dimensional dos inteiros via corpos ciclotômicos. Reticulados construídos deste modo permitem estimativas da distância produto mínima, parâmetro que controla a probabilidade de erro no envio de informações em canais com desvanecimento do tipo Rayleigh. Apresentamos uma nova construção de tais reticulados no caso em que n _e uma potência de 2 e no caso em que n = 3. Estudamos os códigos esféricos que são associados a reticulados com o intuito de obter a maior distância euclidiana mínima, parâmetro que controla a probabilidade de erro em canais gaussianos. Códigos esféricos gerados por grupos comutativos de matrizes ortogonais em dimensão par, 2m, podem ser determinados, via mergulhos de toros planares, pelo quociente de dois reticulados em Rm, onde o sub-reticulado possui uma base cujos vetores são mutuamente ortogonais. Pesquisamos a existência de sub-reticulados nestas condições, nos reticulados com maior densidade de empacotamento em dimensões 2; 3; 4 e 8: Pudemos assim construir famílias de códigos de grupo comutativo que se aproximam do limitante para a distância mínima nas dimensões 4; 6; 8 e 16.

Abstract: We approach here some problems related to minimizing the error probability in signals transmission over Gaussian and Rayleigh channels. Algebraic ideal lattice theory is used to construct rotations of the n-dimensional integer lattice via cyclotomic fields. This construction allows to evaluate the minimum product distance of the lattice, parameter which controls the signal transmission probability through Rayleigh fading channels. We present here such constructions in the cases n = 3 and n a power of 2. Spherical codes generated by commutative group codes of orthogonal matrices in even dimensions, 2m; can be determined by a quotient of n-dimensional lattices, where the sublattice has an orthogonal basis. We characterize families of such sublattices in the lattices with best packing densities in dimensions 2; 3; 4; 6 e 8 and construct the associated spherical codes which approach the commutative group code upper bound for the minimum distance.
Subject: Distância mínima
Teoria dos reticulados
Teoria dos números algébricos
Empacotamento de esferas
Geometria discreta
Language: Português
Editor: [s.n.]
Date Issue: 2008
Appears in Collections:IMECC - Dissertação e Tese

Files in This Item:
File SizeFormat 
Alves_Carina_D.pdf1.07 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.