Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306598
Type: TESE
Title: Sobre corpos de funções algébricas e algumas relações com a criptografia
Title Alternative: On algebraic function fields and some relations with cryptography
Author: Ferreira, Jamil, 1956-
Advisor: Costa, Sueli Irene Rodrigues, 1949-
Abstract: Resumo: O número de classes de divisores de grau zero, h, de corpos de funções algébricas elípticos e hiperelípticos desempenha papel importante nos esquemas criptográficos baseados em curvas elípticas e hiperelípticas. Nesse contexto, h é um número grande e é usualmente procurado por meio de algoritmos (baby step - giant step, por exemplo) em um intervalo de números reais obtido após um truncamento no produto infinito de Euler da função zeta do corpo de funções. Tendo a desigualdade de Hasse-Weil como motivação, encontramos identidades finitas para h que são também explícitas no sentido de que seus custos computacionais são diretamente deduzíveis dessas identidades. Como consequência, obtivemos também identidades finitas e explícitas para os coeficientes ai do L-polinômio da função zeta. Ferramentas fundamentais nesta pesquisa foram as L-séries de Artin e outros resultados envolvendo os símbolos polinomiais de Legendre

Abstract: The divisor class number of degree zero, h, of elliptic and hyperelliptic function fields plays an important role in cryptographic schemes based on elliptic and hyperelliptic curves. In this context, h is a large number and it is usually searched by means of algorithms (baby step - giant step, for example) in an interval of real numbers obtained after truncating the infinit Euler product coming from the zeta function of the function field. Taking the Hasse-Weil inequality as motivation, we derived finite identities for h which are also explicit in the sense that their computational costs are straightforwardly derivable from these identities. We also obtained finite and explicit identities for the coefficients ai of the L-polynomialof the zeta function. Fundamental tools for this research were the Artin L-series and other results involving the Legendre polynomial symbols
Subject: Corpos de funções algébricas
Número de classes de divisores
Corpos de funções hiperelípticos
Criptografia
Language: Português
Editor: [s.n.]
Date Issue: 2013
Appears in Collections:IMECC - Dissertação e Tese

Files in This Item:
File SizeFormat 
Ferreira_Jamil_D.pdf1.49 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.