Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306560
Type: TESE
Title: Metodos de interpolação real e espaços de Sobolev e Besov sobre a esfera Sd
Title Alternative: Real interpolation methods and Sobolev and Besov espaces on the Sd sphere
Author: Oliveira, Andrielber da Silva
Advisor: Oliveira, Andrielber da Silva
Abstract: Resumo: O objetivo da dissertação é realizar um estudo dos espaços de Besov sobre a esfera unitária d-dimensional real Sd. No primeiro capítulo são estudados espaços de interpolação utilizando dois métodos de interpolação real. Em particular são estudados os Teoremas de Equivalência e de Reiteração para os J-método e K-método. No segundo capítulo é realizado um estudo rápido sobre análise harmônica na esfera Sd, incluindo um estudo sobre harmônicos esféricos, harmônicos zonais, somas de Cesàro e sobre um teorema de multiplicadores. O terceiro e último capítulo é o mais importante e nele são aplicados os resultados dos capítulos anteriores. São introduzidos os espaços de Besov, decompondo uma função suave definida sobre a esfera d-dimensional, em uma série de harmônicos esféricos e usando uma seqüência de polinômios zonais que podem ser vistos como uma generalização natural dos polinômios de Vallée Poussin definidos sobre o círculo unitário. O principal resultado estudado diz que todo espaço de Besov pode ser obtido como espaço de interpolação de dois espaços de Sobolev

Abstract: The purpose of this work is to make a study about Besov¿s spaces on the unit d-dimensional real sphere Sd. In the first chapter are studied spaces of interpolation using two real interpolation methods. In particular, are studied The Equivalence Theorem and The Reiteration Theorem for the J-method and the K-method. In the second chapter it is made a short study about harmonic analysis on the sphere Sd, including a study about spherics harmonics, zonal harmonics, Cesàro sums and about a multiplier theorem. The third and last chapter is the most important of this work. In this chapter are applied the results of the others chapters. Are introduced the Besov spaces, decomposing a smooth function defined on the d-dimensional sphere, in a series of harmonics spherics and using a sequence o zonal polynomials which can be seen as a natural generalization of the Vallée Poussin polynomials defined on the unit circle. The main result studied says that every Besov¿s space can be got as a interpolation space of two Sobolev¿s spaces
Subject: Análise harmônica
Análise funcional
Sobolev, Espaço de
Espaços de interpolação
Language: Português
Editor: [s.n.]
Date Issue: 2006
Appears in Collections:IMECC - Dissertação e Tese

Files in This Item:
File SizeFormat 
Oliveira_AndrielberdaSilva_M.pdf1.25 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.