Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306556
Type: TESE
Title: Estimativas para n-Larguras e números de entropia de conjuntos de funções suaves sobre o toro T^d
Title Alternative: Estimates for n-Widths and entropy numbers of sets of smooth functions on the torus T^d
Author: Stábile, Régis Leandro Braguim, 1985-
Advisor: Tozoni, Sergio Antonio, 1953-
Abstract: Resumo: As teorias de n-larguras e de entropia foram introduzidas por Kolmogorov na década de 1930. Desde então, muitos trabalhos têm visado obter estimativas assintóticas para n-larguras e números de entropia de diferentes classes de conjuntos. Neste trabalho, investigamos n-larguras e números de entropia de operadores multiplicadores definidos sobre o toro d-dimensional. Na primeira parte, estabelecemos estimativas inferiores e superiores para n-larguras e números de entropia de operadores multiplicadores gerais. Na segunda parte, aplicamos estes resultados para operadores multiplicadores específicos, associados a conjuntos de funções finitamente e infinitamente diferenciáveis sobre o toro. Em particular, demonstramos que as estimativas obtidas são exatas em termos de ordem em diversas situações

Abstract: The theories of n-widths and entropy were introduced by Kolmogorov in the 1930s. Since then, many works aims to find estimates for n-widths and entropy numbers of different classes of sets. In this work, we investigate n-widths and entropy numbers of multiplier operators defined on the d-dimensional torus. In the first part, upper and lower bounds are established for n-widths and entropy numbers of general multiplier operators. In the second part, we apply these results to specific multiplier operators, associated with sets of finitely and infinitely differentiable functions on the torus. In particular, we prove that, the estimates obtained are order sharp in various situations
Subject: n-Larguras
Entropia
Toro (Geometria)
Multiplicadores (Análise matemática)
Teoria da aproximação
Editor: [s.n.]
Date Issue: 2014
Appears in Collections:IMECC - Dissertação e Tese

Files in This Item:
File SizeFormat 
Stabile_RegisLeandroBraguim_D.pdf1.52 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.