Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306440
Type: TESE
Title: Medidas de risco e seleção de portfolios
Title Alternative: Risk measures and portfolio selection
Author: Magro, Rogerio Correa
Advisor: Andreani, Roberto, 1961-
Abstract: Resumo: Dado um capital C e n opções de investimento (ativos), o problema de seleção de portfolio consiste em aplicar C da melhor forma possivel para um determinado perfil de investidor. Visto que, em geral, os valores futuros destes ativos não são conhecidos, a questão fundamental a ser respondida e: Como mensurar a incerteza? No presente trabalho são apresentadas tres medidas de risco: O modelo de Markowitz, o Value-at-Risk (VaR) e o Conditional Value-At-Risk (CVaR). Defendemos que, sob o ponto de vista teorico, o Valor em Risco (VaR) e a melhor dentre as tres medidas. O motivo de tal escolha deve-se ao fato de que, para o VaR, podemos controlar a influencia que os cenários catastroficos possuem sobre nossas decisões. Em contrapartida, o processo computacional envolvido na escolha de um portfolio ótimo sob a metodologia VaR apresenta-se notadamente mais custoso do que aqueles envolvidos nos calculos das demais medidas consideradas. Dessa forma, nosso objetivo e tentar explorar essa vantagem computacional do Modelo de Markowitz e do CVaR no sentido de tentar aproximar suas decisões aquelas apontadas pela medida eleita. Para tal, consideraremos soluções VaR em seu sentido original (utilizando apenas o parametro de confiabilidade ao buscar portfolios otimos) e soluções com controle de perda (impondo uma cota superior para a perda esperada)

Abstract: Given a capital C and n investment options (assets), the problem of portfolio selection consists of applying C in the best possible way for a certain investor profile. Because, in general, the future values of these assets are unknown, the fundamental question to be answered is: How to measure the uncertainty? In the present work three risk measures are presented: The Markowitz¿s model, the Value-at-Risk (VaR) and the Conditional Value-at-Risk (CVaR). We defended that, under the theoretical point of view, the Value in Risk (VaR) is the best amongst the three measures. The reason of such a choice is due to the fact that, for VaR, we can control the influence that the catastrophic sceneries possess about our decisions. In the other hand, the computational process involved in the choice of a optimal portfolio under the VaR methodology comes notedly more expensive than those involved in the calculations of the other considered measures. In that way, our objective is to try to explore that computational advantage of the Markowitz¿s Model and of CVaR in the sense of trying to approach its decisions the those pointed by the elect measure. For such, we will consider VaR solutions in its original sense (just using the confidence level parameter when looking for optimal portfolios) and solutions with loss control (imposing a superior quota for the expected loss)
Subject: Otimização matemática
Valor em Risco (VaR)
Valor em risco condicional (CVaR)
Otimização do Valor Ordenado (OVO)
Modelo de Markowitz
Language: Português
Editor: [s.n.]
Date Issue: 2008
Appears in Collections:IMECC - Dissertação e Tese

Files in This Item:
File SizeFormat 
Magro_RogerioCorrea_M.pdf1.28 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.