Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306439
Type: TESE
Title: Sistemas ponto de sela com uma aplicação a aceleração do Lagrangiano Aumentado
Title Alternative: Saddle point systems with an application to the acceleration of the Augmented Lagrangian
Author: Ramirez, Viviana Analia, 1976-
Advisor: Andreani, Roberto, 1961-
Abstract: Resumo: Os sistemas ponto de sela surgem em uma grande quantidade de áreas de investiga¸c¿ao, como física, química, engenharia, reconstrução de imagens, etc. Portanto, s¿ao objeto de pesquisa, tanto as propriedades presentes neles como os métodos utilizados para a sua resolução. Diversos métodos foram desenvolvidos dependendo das características do sistema, alguns deles com a propriedade de preservar a estrutura da matriz do sistema. Neste trabalho utilizamos umo destes métodos para melhorar a precisão obtida pelo método ALGENCAN (Lagrangiano Aumentado usando GENCAN) em problemas de Programação Não Linear (PNL). Este método é muito robusto, ele obtém uma boa aproximação da solução com poucas iterações, mas perto da solução não consegue obter uma precisão muito exigente. Para melhorar esta precisão, aplicamos o método de Newton a um sistema KKT reduzido no ponto obtido por ALGENCAN, gerando um sistema ponto de sela. Para esta implementação utilizamos o método conhecido como fatoração LDLT , escolhido por sua propriedade de preservar a estrutura esparsa do sistema

Abstract: Saddle point systems arise in wide areas of research fields like physics, chemistry and engineering and images reconstructions, etc. Then, the properties of these systems and solving methods have been subjects of intense study in the last years. Depending upon the system properties, several methods were developed; some of these, exhibit the property of preserving the matrix structure system, like the sparsity. In this work, we have used one of these methods to improve the accuracy by using ALGECAN (Augmented Lagrangian using GENCAN) applied to Non-linear Programming (NLP) problems. This is a robust method which helps to get a good approximation to the solution. However, in several cases, it is not possible to get the desired accuracy. In order to improve the precision, we have applied Newton¿s method in a reduced KKT system, starting from a point given by ALGENCAN, which is a saddle point. We employ the so called LDLT factorization in order to implement Newton¿s method, which give us better accuracy
Subject: Sistemas ponto de sela
Métodos numéricos
Otimização matemática
Language: Português
Editor: [s.n.]
Date Issue: 2008
Appears in Collections:IMECC - Dissertação e Tese

Files in This Item:
File SizeFormat 
Ramirez_VivianaAnalia_M.pdf2.5 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.