Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306147
Type: TESE
Title: Fatoração de inteiros e grupos sobre conicas
Title Alternative: Interger fatorization and groups on conics
Author: Souza, Vera Lucia Graciani de
Advisor: Araujo, Martinho da Costa
Abstract: Resumo: Este trabalho tem por objetivo fatorar número inteiro utilizando pontos racionais sobre o círculo unitário. Igualmente pretende determinar alguns grupos sobre cônicas. A pesquisa inicia com os conceitos básicos de Álgebra e Teoria dos Números, que fundamentam que o conjunto de pontos racionais sobre o círculo unitário tem uma estrutura de grupo. Desse conjunto é possível estender a idéia de grupo de pontos racionais sobre o círculo para pontos racionais sobre cônicas. Para encontrar os pontos racionais sobre o círculo foi usada uma parametrização do círculo por funções trigonométricas. Para cada ponto sobre o círculo unitário está associado um ângulo com o eixo positivo das abscissas, portanto adicionar pontos sobre o círculo equivale adicionar seus ângulos correspondentes. Com a operação "adição" de pontos sobre o círculo é possível definir uma estrutura de grupo que é utilizada para fatorar números inteiros. Para a cônica, a operação "adição" é determinada algebricamente ao calcular o coeficiente angular da reta que passa por dois pontos dados e o elemento neutro dessa cônica, também justificada geometricamente. No trabalho foram determinados os grupos de pontos racionais sobre cônicas e demonstrado alguns resultados sobre esses grupos usando os resíduos quadráticos e finalizando com a dedução de alguns resultados sobre a soma das coordenadas dos pontos sobre uma cônica.

Abstract: The objective of this paper is to factorize integer number using rational points on the unitary circle. Also, it intends to determinate some groups on the conics. The research begins with the basic concepts of Algebra and Number Theory ensuring that the rational points set on the unitary circle has a structure of group. From this set is possible to extend the idea of rational points on the circle toward rational points on conics. In order to find the rational points on the circle a parametrization by trigonometric function on it was used. For each point on the unitary circle it is associated an angle with abscissa positive axis, therefore adding points on the circle equals to add its corresponding angles. With the operation of "addition" points on the circle it is possible to define a group structure that is used to factorize integer numbers. For the conic, the "addition" operation is algebraically determinated when the angle coeficient of the line is calculated that joins two given points and the neutral element of that conic, which is geometrically justified. In the research the rational points groups on the conics were determined, and some result on these groups using quadratic residues were demonstrated, and it was finalized with the deduction of some results concerning the coordinates sum of points on a conics.
Subject: Campos algébricos
Teoria dos números
Fatoração (Matemática)
Algoritmos
Teoremas de reciprocidade
Language: Português
Editor: [s.n.]
Date Issue: 2009
Appears in Collections:IMECC - Dissertação e Tese

Files in This Item:
File SizeFormat 
Souza_VeraLuciaGracianide_M.pdf1.11 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.