Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306030
Type: TESE
Title: Solução da equação da onda imagem para continuação do afastamento mediante o metodo das caracteristicas
Title Alternative: Solution of the image-wave equation for offset continuation by means of the methd of characteristics
Author: Coimbra, Tiago Antonio Alves, 1981-
Advisor: Schleicher, Maria Amélia Novais, 1967-
Abstract: Resumo: O deslocamento de um evento sísmico sob a chamada operação de continuação de afastamento (Offset Continuation Operation - OCO) pode ser descrita por uma equação diferencial parcial de segunda ordem que foi denominada de equação da onda imagem para OCO. Por substituição de uma solução tentativa da forma da teoria dos raios, pode se deduzir uma equação iconal OCO que descreve os aspectos cinemáticos da propagação da onda imagem OCO. Neste trabalho, resolvemos a equação da onda imagem OCO por meio do método das características. As características desta equação são as trajetórias OCO que descrevem o caminho do deslocamento de um evento sísmico sob variação do afastamento entre fonte e receptor. O conjunto de pontos finais de diversas trajetórias OCO, traçadas a partir do mesmo afastamento inicial até o mesmo afastamento final, define o raio de velocidade OCO ou, mais breve, raio OCO. Este raio OCO pode ser empregado para análise de velocidade. O algoritmo consiste do traçamento de raios OCO e então encontrar o ponto de interseção entre o raio OCO e o evento de reflexão sísmica dentro da seção final de afastamento comum. O procedimento tem a vantagem sobre a análise de velocidade convencional de que está baseado numa comparação de dados simulados com dados adquiridos ao invés de dois conjuntos de dados simulados. Exemplos numéricos demonstram que o traçamento de raios OCO pode ser executado de maneira precisa e de que a análise de velocidade resultante fornece velocidades confiáveis. Além disso, baseado nas expressões analíticas para os raios OCO que começam a partir do afastamento zero (migraton to common offset - MCO), deduzimos uma equação da onda imagem para continuação de velocidade MCO. Demonstramos que, em muitas situações práticas, esta equação pode ser empregada diretamente para OCO, assim evitando a necessidade de traçar trajetórias e raios OCO

Abstract: The dislocation of a seismic event under the so-called Offset Continuation Operation (OCO) can be described by a second-order partial differential equation, which has been called the OCO image-wave equation. By substitution of a ray-like trial solution, an OCO image-wave eikonal equation is obtained that describes the kinematic aspects of OCO imagewave propagation. In this work, we solve the OCO image-wave eikonal equation by means of the method of characteristics. The characteristics of this equation are the OCO trajectories that describe the path of dislocation of a seismic event under variation of the source-receiver offset. The set of endpoints of several OCO trajectories traced from the same initial to the same final offset under varying values for the medium velocity defines the OCO velocity ray or briefly OCO ray. This OCO ray can be employed for velocity analysis. The algorithm consists of OCO ray tracing an then finding the intersection point of the OCO ray with the seismic reflection event in the final common-offset section. The procedure has the advantage over conventional velocity analysis that it is based on a comparison of simulated and acquired data rather than two sets of simulated data. Numerical examples demonstrate that the OCO ray tracing can be accurately executed and that the resulting velocity analysis yields reliable velocities. Moreover, based on the analytic expressions for the OCO rays starting from zero-offset (migraton to common offset, MCO), we derived an image-wave equation for MCO velocity continuation. We demonstrate that in many practical situations this equation can be directly employed for OCO, thus avoiding the need to trace OCO trajectories and OCO rays
Subject: Ondas sismicas
Equações diferenciais parciais - Soluções numéricas
Métodos de continuação
Language: Português
Editor: [s.n.]
Date Issue: 2010
Appears in Collections:IMECC - Dissertação e Tese

Files in This Item:
File SizeFormat 
Coimbra_TiagoAntonioAlves_M.pdf1.61 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.