Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.descriptionOrientador: Marco Antonio Teixeirapt_BR
dc.descriptionTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientificapt_BR
dc.format.extent80p. : il.pt_BR
dc.titleOrbitas periodicas em sistemas mecanicospt_BR
dc.title.alternativePeriodic orbits in dynamical systemspt_BR
dc.contributor.authorRoberto, Luci Any Franciscopt_BR
dc.contributor.advisorTeixeira, Marco Antonio, 1944-pt_BR
dc.contributor.institutionUniversidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científicapt_BR
dc.contributor.nameofprogramPrograma de Pós-Graduação em Matemáticapt_BR
dc.subjectÓrbitas periódicaspt_BR
dc.subjectSistemas hamiltonianospt_BR
dc.subjectFormas normais (Matemática)pt_BR
dc.subjectCampos vetoriaispt_BR
dc.subject.otherlanguagePeriodic orbitsen
dc.subject.otherlanguageHamiltonian systemsen
dc.subject.otherlanguageNormal forms (Mathematics)en
dc.subject.otherlanguageVector fieldsen
dc.description.abstractResumo: Neste trabalho estudamos sistemas dinâmicos possuindo estruturas Hamiltonianas e reversíveis(pt
dc.description.abstractAbstract: In this work we study dynamical systems possessing Hamiltonian and time-reversible structures. The reversibility concept is de¯ned in terms of an involution. Initially we discuss the dynamics of Hamiltonian vector ¯elds with 2 and 3 degrees of freedom around an elliptic equilibrium in the presence of an involution which preserves the symplectic structure. The main results discuss the existence of one-parameter families of reversible periodic solutions terminating at the equilibrium. The main techniques that are used in the proofs are Belitskii and Birkho® normal forms and the Liapunov-Schmidt Reduction. Next we consider a case of the 3-body restricted problem in rotating coordinates. In this case the two primaries are oving in an elliptic collision orbit. By the continuation method of Poincare we characterize that the periodic circular orbits and the symmetric periodic elliptic orbits from the Kepler problem which can be prolonged to pseudo periodic orbits of the planar restricted 3{body problem in rotating coordinates with the two primaries moving in an elliptic collision orbiten
dc.identifier.citationROBERTO, Luci Any Francisco. Orbitas periodicas em sistemas mecanicos. 2008. 80p. Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica, Campinas, SP. Disponível em: <>. Acesso em: 10 ago. 2018.pt_BR
dc.description.degreedisciplineTopologia e Geometriapt_BR
dc.description.degreenameDoutor em Matemáticapt_BR
dc.contributor.committeepersonalnameBuzzi, Claudio Aguinaldopt_BR
dc.contributor.committeepersonalnameTal, Fabio Armandopt_BR
dc.contributor.committeepersonalnameGarcia, Ronaldo Alvespt_BR
dc.contributor.committeepersonalnameSaa, Alberto Vazquezpt_BR
dc.description.provenanceMade available in DSpace on 2018-08-10T12:10:27Z (GMT). No. of bitstreams: 1 Roberto_LuciAnyFrancisco_D.pdf: 627926 bytes, checksum: 0c8cb4e26df805282fa716847859d82f (MD5) Previous issue date: 2008en
Appears in Collections:IMECC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Roberto_LuciAnyFrancisco_D.pdf613.21 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.