Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/280594
Type: TESE
Title: Uma nova abordagem para a noção de quase-verdade
Title Alternative: A new approach to the concept of quase-truth
Author: Silvestrini, Luiz Henrique da Cruz
Advisor: Coniglio, Marcelo Esteban, 1963-
Abstract: Resumo: Mikenberg, da Costa e Chuaqui (1986) introduziram a noção de quase-verdade por meio da noção de estruturas parciais, e para tanto, conceberam os predicados como ternas. O arcabouço conceitual resultante proporcionou o emprego de estruturas parciais na ciência, pois, em geral, não sabemos tudo a respeito de um determinado domínio de conhecimento. Generalizamos a noção de predicados como ternas para fórmulas complexas. A partir desta nova abordagem, obtemos uma definição de quase-verdade via noção de satisfação pragmática de uma fórmula A em uma estrutura parcial E. Introduzimos uma lógica subjacente à nossa nova definição de quase-verdade, a saber, a lógica paraconsistente trivalente LPT1, a qual possui uma axiomática de primeira ordem. Relacionamos a noção de quase-verdade com algumas lógicas paraconsistentes já existentes. Defendemos que a formalização das Sociedades Abertas, introduzidas por Carnielli e Lima-Marques (1999), quando combinada com quantificadores modulados, introduzidos por Grácio (1999), constitui uma alternativa para capturar a componente indutiva presente na atividade científica, e mostramos, a partir disso, que a proposta original de da Costa e colaboradores pode ser explicada em termos da nova noção de sociedades moduladas

Abstract: Newton da Costa and his collaborators have introduced the notion of quasi-truth by means of partial structures, and for this purpose, they conceived the predicates as ordered triples: the set of tuples which satisfies, does not satisfy and can satisfy or not the predicate, respectively (the latter represents lack of information). This approach provides a conceptual framework to analyse the use of (first-order) structures in science in contexts of informational incompleteness. In this Thesis, the notion of predicates as triples is extended recursively to any complex formula of the first-order object language. From this, a new definition of quasi-truth via the notion of pragmatic satisfaction is obtained. We obtain the proof-theoretic counterpart of the logic underlying our new definition of quasi-truth, namely, the three-valued paraconsistent logic LPT1, which is presented axiomatically in a first-order language. We relate the notion of quasi-truth with some existing paraconsistent logics. We defend that the formalization of (open) society semantics when combined with the modulated quantifiers constitutes an alternative to capture the inductive component present in scientific activity, and show, from this, that the original proposal of da Costa and collaborators can be explained in terms of the new concept of modulated societies
Subject: Lógica matemática não-clássica
Lógica simbólica e matemática
Linguagens formais - Semântica
Language: Português
Editor: [s.n.]
Date Issue: 2011
Appears in Collections:IFCH - Tese e Dissertação

Files in This Item:
File SizeFormat 
Silvestrini_LuizHenriquedaCruz_D.pdf1.26 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.