Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/277246
Type: TESE
Title: Espectro de energia em um sistema dinâmico ressonante
Author: Carvalho, Ricardo Egydio de
Advisor: Ozório de Almeida, Alfredo Miguel
Abstract: Resumo: Representamos um sistema dinâmico autônomo integrável com dois graus de liberdade na vizinhança de um ponto de equilíbrio estável pela forma normal de Birkhoff. As órbitas descrevem um movimento regular e estão presas a toros invariantes, figura (II - 5). Consideramos uma perturbação que não quebra a integrabilidade do sistema gerada pelos termos ressonantes de mais baixa ordem que aparecem na extensão da forma normal. Com isso aproximamos o movimento clássico pela forma normal ressonante, figura (II - 6). Classicamente, esta perturbação ressonante gera uma família de toros em ilha envoltos por separatrizes. Em primeira aproximação poderíamos obter o espectro de energia quantizando, segundo as regras de Bohr-Sommerfeld, a área dos toros externos à separatriz e os toros em ilha separadamente, mas com isso desprezaríamos o efeito do tunelamento que ocorre na vizinhança da separatriz. Calculamos exatamente os autovalores da forma normal ressonante descrita em coordenadas generalizadas (p, q) quantizando-a na base dos autoestados de dois osciladores harmônicos. Por outro lado utilizamos um formalismo baseado na representação de Wigner-Weyl para calcular os autovalores semiclássicos da Hamiltoniana descrita em coordenadas de ângulo/ ação (J, q). A conexão entre as variáveis (p, q) e as ângulo/ação (J, q) é feita por uma transformação canônica não-linear, que não tem equivalente quântico. Portanto, trabalhar com ângulo/ação quanticamente, acarreta em não obter semiclassicamente os autovalores certos para a variável ação. Nesse sentido colocamos a seguinte questão: '"Se quantizarmos diretamente o sistema descrito em ângulo e ação e calcularmos seu espectro de energia no limite de grandes números quânticos, qual será a fidelidade do resultado uma vez que a pequena contribuição do tunelamento poderia ser da ordem de magnitude do erro envolvido na quantização da ação?" Para responder essa questão, mostramos que os resultados numéricos para o espectro de energia semiclássico coincidem com aqueles exatos quanticamente. Assim, evidenciamos, através desta verificação numérica, que podemos trabalhar com o formalismo de ângulo/ação conforme as conveniências de cada problema, desde que as informações que queiramos saber dependam da matriz Hamiltoniana inteira, que é o caso dos autovalores, e não dos elementos de matriz isoladamente. Os temas envolvidos com a teoria dos movimentos regulares e irregulares classicamente são encontrados no capitulo I. No capítuloII, obtemos detalhadamente a forma normal ressonante nas variáveis (p, q) e (J, q); enquanto que no capítulo III apresentamos a discussão sobre o formalismo semiclássico e explicitamos os elementos de matriz de H(J, q). No IV capítulo quantizamos H(p, q) em operadores de ocupação e chegamos aos elementos de matriz para H (â, â+). Finalmente no capítulo V exibimos e discutimos os resultados computacionais obtidos

Abstract: Not informed.
Subject: Espectroscopia eletrônica
Espectrosocpia fotoeletronica
Language: Português
Editor: [s.n.]
Date Issue: 1985
Appears in Collections:IFGW - Tese e Dissertação

Files in This Item:
File SizeFormat 
Carvalho_RicardoEgydiode_M.pdf1.12 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.