Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/275967
Type: DISSERTAÇÃO
Degree Level: Mestrado
Title: Algoritmos para emparelhamentos em grafos bipartidos
Author: Saip, Herbert Alexander Baier
Advisor: Lucchesi, Cláudio Leonardo, 1945-
Abstract: Resumo: O problema de emparelhamentos em grafos consiste em determinar um conjunto M de arestas do grafo, onde as arestas são disjuntas nos vértices. Em particular, estamos interessados em determinar emparelhamentos máximos, ou seja, de cardinalidade máxima. Existem muitas variações em torno do tema, o grafo pode ser: bipartido ou não, ponderado ou não. Neste trabalho apresentamos as principais técnicas para se projetar os algoritmos mais eficientes que resolvem o problema de emparelhamentos máximos, ponderados ou não, em grafos bipartidos. Também descrevemos os principais algoritmos, seqüenciais e paralelos, que resolvem este problema. O Capítulo 2 apresenta os principais algoritmos para resolver o problema em grafos bipartidos não ponderados: o algoritmo de Hopcroft e Karp, o algoritmo paralelo de Kim e Chwa e o algoritmo paralelo de Goldberg, Plotkin e Vaidya. O Capítulo 3 apresenta os principais algoritmos para resolver o problema em grafos bipartidos ponderados: o algoritmo de Edmonds e Karp, o algoritmo com escalonamento de Gabow, o algoritmo com escalonamento e aproximação de Gabow e Tarjan, o algoritmo paralelo de Goldberg, Plotkin e Vaidya e o algoritmo paralelo de Gabow e Tarjan. O Apêndice A contém uma tabela dos principais algoritmos para resolver o problema no caso em que os grafos não são bipartidos

Abstract: The matching problem in graphs consists in determining a vertex disjoint set M of edges of the graph. In particular, we are interested in finding maximum matchings, that is, matchings of maximum cardinality. There are many variations around this problem, the graph can be: bipartite or general, weighted or not. In this work we present the main techniques to design the most efficient algorithms that solve the problem of maximum matching, weighted or not, in bipartite graphs. We also describe the main algorithms, sequential and parallel, to solve this problem. Chapter 2 contains the most important algorithms to solve the problem for non weighted bipartite graphs, namely, the algorithm of Hopcroft and Karp, the parallel algorithm of Kim and Chwa, and the parallel algorithm of Goldberg, Plotkin and Vaidya. Chapter 3 contains the most important algorithms to solve the problem for weighted bipartite graphs, namely, the algorithm of Edmonds and Katp, the scaling algorithm of Gabow, the scaling and approximation algorithm of Gabow and Tarjan, the parallel algorithm of Goldberg, Plotkin and Vaidya and the parallel algorithm of Gabow and Tarjan. In Appendix A it is given a table which describes briefly the most important algorithms for solving the general problem, in which the graph is not bipartite
Subject: Algoritmos
Grafo (Sistema de computador)
Language: Português
Editor: [s.n.]
Date Issue: 1993
Appears in Collections:IC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Saip_HerbertAlexanderBaier_M.pdf3.85 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.