Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/275872
Type: DISSERTAÇÃO
Degree Level: Mestrado
Title: Diagramas de Voronoi de ordem k na geometria projetiva orientada
Author: Westrupp, Rodrigo Bittencourt
Advisor: Rezende, Pedro Jussieu de, 1955-
Abstract: Resumo: Nesta dissertação, apresentamos uma generalização do diagrama de Voronoi: consideramos diagramas de Voronoi de ordem k no plano projetivo orientado T². Este espaço admite retas orientadas assim como muitos outros conceitos geométricos fundamentais de maneira consistente. Neste contexto, demonstramos várias propriedades de diagramas de Voronoi, algumas delas intrínsecas a T². Por exemplo, o diagrama de Voronoi de ordem k de um conjunto de n sítios em T² tem um número exato de regiões e é antípoda do diagrama de Voronoi de ordem n - k do mesmo conjunto de sítios, para todo k : 1 < k < n. Finalmente, apresentamos uma generalização, de R² para T², de dois algoritmos para construção de diagramas de Voronoi de ordem k. O primeiro algoritmo constrói os diagramas de Voronoi de todas as ordens para busca dos k vizinhos mais próximos, em tempo e espaço ótimos; enquanto o segundo é um algoritmo incremental randomizado on-line para construir o diagrama de Voronoi de cada ordem, independentemente. Para este segundo algoritmo, apresentamos um novo método para localização de pontos, o qual reduz a complexidade de tempo por um fator logarítmico e que é muito mais simples que o original.

Abstract: In this dissertation, we present a generalization of the Voronoi diagram: we consider order k Voronoi diagrams in the oriented projective plane T². This space handles oriented lines as well as many other fundamental geometric concepts in a consistent way. In this context, we show several properties of Voronoi diagrams, some of them intrinsic to T². For example, the order k Voronoi diagram of a set of n sites in T² has an exact number of regions. Furthermore, this diagram is antipodal to the order n - k Voronoi diagram of the same set of sites, for all k : 1 < k < n. Finally, we present a generalization, from R² to T², of two algorithms for constructing order k Voronoi diagrams. The first one constructs all Voronoi diagrams for k nearest neighbor search, in optimal time and space, and the other is an on-line randomized incremental algorithm for constructing each order k Voronoi diagram, independently. For this second algorithm, we present a new method for point location which improves the time complexity by a logarithmic factor and which is much simpler than the original one.
Subject: Geometria projetiva
Algoritmos
Language: Português
Editor: [s.n.]
Date Issue: 1999
Appears in Collections:IC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Westrupp_RodrigoBittencourt_M.pdf8.75 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.