Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/275531
Type: DISSERTAÇÃO
Degree Level: Mestrado
Title: A unified framework for design, deployment, execution, and recommendation of machine learning experiments = Uma ferramenta unificada para projeto, desenvolvimento, execução e recomendação de experimentos de aprendizado de máquina
Title Alternative: Uma ferramenta unificada para projeto, desenvolvimento, execução e recomendação de experimentos de aprendizado de máquina
Author: Werneck, Rafael de Oliveira, 1989-
Advisor: Torres, Ricardo da Silva, 1977-
Abstract: Resumo: Devido ao grande crescimento do uso de tecnologias para a aquisição de dados, temos que lidar com grandes e complexos conjuntos de dados a fim de extrair conhecimento que possa auxiliar o processo de tomada de decisão em diversos domínios de aplicação. Uma solução típica para abordar esta questão se baseia na utilização de métodos de aprendizado de máquina, que são métodos computacionais que extraem conhecimento útil a partir de experiências para melhorar o desempenho de aplicações-alvo. Existem diversas bibliotecas e arcabouços na literatura que oferecem apoio à execução de experimentos de aprendizado de máquina, no entanto, alguns não são flexíveis o suficiente para poderem ser estendidos com novos métodos, além de não oferecerem mecanismos que permitam o reuso de soluções de sucesso concebidos em experimentos anteriores na ferramenta. Neste trabalho, propomos um arcabouço para automatizar experimentos de aprendizado de máquina, oferecendo um ambiente padronizado baseado em workflow, tornando mais fácil a tarefa de avaliar diferentes descritores de características, classificadores e abordagens de fusão em uma ampla gama de tarefas. Também propomos o uso de medidas de similaridade e métodos de learning-to-rank em um cenário de recomendação, para que usuários possam ter acesso a soluções alternativas envolvendo experimentos de aprendizado de máquina. Nós realizamos experimentos com quatro medidas de similaridade (Jaccard, Sorensen, Jaro-Winkler e baseada em TF-IDF) e um método de learning-to-rank (LRAR) na tarefa de recomendar workflows modelados como uma sequência de atividades. Os resultados dos experimentos mostram que a medida Jaro-Winkler obteve o melhor desempenho, com resultados comparáveis aos observados para o método LRAR. Em ambos os casos, as recomendações realizadas são promissoras, e podem ajudar usuários reais em diferentes tarefas de aprendizado de máquina

Abstract: Due to the large growth of the use of technologies for data acquisition, we have to handle large and complex data sets in order to extract knowledge that can support the decision-making process in several domains. A typical solution for addressing this issue relies on the use of machine learning methods, which are computational methods that extract useful knowledge from experience to improve performance of target applications. There are several libraries and frameworks in the literature that support the execution of machine learning experiments. However, some of them are not flexible enough for being extended with novel methods and they do not support reusing of successful solutions devised in previous experiments made in the framework. In this work, we propose a framework for automating machine learning experiments that provides a workflow-based standardized environment and makes it easy to evaluate different feature descriptors, classifiers, and fusion approaches in a wide range of tasks. We also propose the use of similarity measures and learning-to-rank methods in a recommendation scenario, in which users may have access to alternative machine learning experiments. We performed experiments with four similarity measures (Jaccard, Sorensen, Jaro-Winkler, and a TF-IDF-based measure) and one learning-to-rank method (LRAR) in the task of recommending workflows modeled as a sequence of activities. Experimental results show that Jaro-Winkler yields the highest effectiveness performance with comparable results to those observed for LRAR. In both cases, the recommendations performed are very promising and might help real-world users in different daily machine learning tasks
Subject: Aprendizado de máquina
Ciência - Experiências
Fluxo de trabalho
Sistemas de recomendação (Filtragem da informação)
Editor: [s.n.]
Date Issue: 2014
Appears in Collections:IC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Werneck_RafaeldeOliveira_M.pdf2.34 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.