Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/265514
Type: DISSERTAÇÃO
Degree Level: Mestrado
Title: Reconhecimento e classificação de fáceis geológicas através da análise de componentes independentes
Title Alternative: Recognition and classification of geological facies based on independent component analysis
Author: Sanchetta, Alexandre Cruz, 1986-
Advisor: Portugal, Rodrigo de Souza, 1971-
Abstract: Resumo: O uso método de análise multivariada ICA (Análise de Componentes Independentes), mais o método K-NN (K-vizinhos mais Próximos) aplicados em dados de poços e em dados sísmicos buscando classificar fácies geológicas e suas características. Esses dois métodos foram aplicados em dados retirados do Campo de Namorado, na Bacia de Campos, Brasil. A ICA encontra as componentes independentes dos dados, que quando treinadas pelo método K-NN para reconhecer padrões nos dados, predizem fácies geológicas e outras informações sobre as rochas, como as características de reservatório. Essas componentes independentes configuram uma nova opção de interpretação das informações disponíveis, pois nessas novas variáveis, o espaço de análise não apresenta dimensões dependentes e exclui informações repetidas ou dúbias da interpretação dos resultados. Além disso, a maior parte da informação é resumida em poucas dimensões, resultando em uma possível redução de variáveis referentes ao problema. Um abundante número de testes foi feito procurando a taxa de sucesso desse método. Como taxa de sucesso, é compreendida a divisão do número de predições corretas dividido pelo número total de tentativas. O que se observa é uma taxa de sucesso alta, em torno de 85% de acerto em algumas situações, ressaltando-se que as componentes têm distribuição gaussiana, sendo que o método funciona melhor em encontrar componentes não-gaussianas. Mesmo nessa situação adversa o método se mostrou robusto. A solidez do método mostra-se uma alternativa para novas formas de interpretação geológicas e petrofísicas. Um dos trunfos desse método é que a base da sua aplicação pode ser estendida para outros tipos de dados, inclusive de naturezas físicas diferentes

Abstract: The use of multivariate analysis method ICA (Independent Component Analysis), plus the K-NN method (K-nearest Neighbor) applied on well log data and seismic data to predict the classification of geological facies and their characteristics. These two methods were applied to data from the Campo de Namorado, in the Campos Basin, Brasil. The ICA finds the independent components of the data that can be trained by K-NN method to recognize patterns in the data and predict the geological facies or other information about the rocks, as the characteristics of the reservoir. These independent components make up a new option for interpretation of available information, because with these new variables, the space has no dependent dimensions and the duplicate information or dubious interpretation of results are excluded. Moreover, most of the information is summarized in a few dimensions, resulting in a possible reduction of variables related to the problem. An abundant number of tests were done looking for the success rate of this method. As success rate, it is understood by the division of the number of correct predictions divided by total attempts. What is observed is a high success rate, around 85% accuracy in some situations, pointing out that the components have a Gaussian distribution and the method works best in finding non-Gaussian components. Even in this adverse situation the method was robust. The robustness of the method proves that ICA can be an alternative to new forms of geological and petrophysical interpretation. One of the advantages of this method is that the basis of their application can be extended to other types of data, including datas with different physical natures
Subject: Análise multivariada
Fácies (Geologia)
Reconhecimento de padrões
Classificação
Language: Português
Editor: [s.n.]
Citation: SANCHETTA, Alexandre Cruz. Reconhecimento e classificação de fáceis geológicas através da análise de componentes independentes. 2010. 92 f. Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/265514>. Acesso em: 17 ago. 2018.
Date Issue: 2010
Appears in Collections:FEM - Tese e Dissertação

Files in This Item:
File SizeFormat 
Sanchetta_AlexandreCruz_M.pdf1.9 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.