Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/264501
Type: TESE
Degree Level: Doutorado
Title: Modelagem numérica e análise experimental de parâmetros térmicos e microestruturais na solidificação radial de ligas binárias
Title Alternative: Numerical modeling and experimental analysis of thermal and microstructural parameters in the radial solidification of binary alloys
Author: Bertelli, Felipe
Advisor: Garcia, Amauri, 1949-
Abstract: Resumo: A análise do comportamento térmico em um sistema metal/molde cilíndrico durante a solidificação é de interesse tanto teórico quanto industrial. A determinação precisa da velocidade a que o metal se solidifica e a distribuição do campo de temperaturas dentro do metal é de suma importância para a otimização e o controle de processos de fundição. Modelos numéricos são amplamente utilizados, tendo em vista a simulação do processo de solidificação em inúmeras áreas, incluindo o vazamento, a soldagem, o crescimento de cristais e o processamento a laser. A simulação numérica de peças cilíndricas fundidas só pode produzir informações corretas se as condições de térmicas de fronteira, tais como o coeficiente transitório de transferência de calor metal/molde (h), e outros parâmetros térmicos como velocidade de solidificação e taxa de resfriamento forem conhecidos com precisão. Apesar da importância do parâmetro h para a fundição de peças cilíndricas, as informações disponíveis na literatura são escassas. No presente trabalho foram desenvolvidos um modelo numérico para análise da solidificação radial em geometrias cilíndricas e um extenso estudo experimental abrangendo a solidificação de ligas binárias em sistemas de extração de calor radial, nas posições horizontal e vertical, no formato de cilindros maciços solidificados de fora para dentro e cilindros ocos solidificados de dentro para fora. Ligas com propriedades térmicas e com intervalos de solidificação bastante distintos foram escolhidas para o estudo experimental. O modelo numérico desenvolvido foi aferido frente a resultados experimentais da cinética de solidificação de ligas binárias dos dois diferentes sistemas metálicos adotados (Al-Fe e Pb-Sb) e também confrontado com as previsões de um modelo analítico. Para determinação do coeficiente transitório (h), utilizou-se o método inverso de análise de condução de calor. Como resultado, os perfis transitórios em função do tempo, h (t), foram obtidos por uma expressão da forma h = a.t± m, em que (-) refere-se à solidificação de fora para dentro e (+) refere-se a solidificação de dentro para fora com um molde interno. A análise das resistências térmicas mostrou que em alguns sistemas de solidificação, a resistência térmica à transferência de calor imposta pela camada de sólido formada durante o processo de solidificação é determinante a partir de um determinado instante da solidificação. Os altos valores de taxas de resfriamento e velocidades de deslocamento da frente de solidificação, impostos pelo sistema de extração de calor radial geraram, para o caso das ligas do sistema Pb-Sb, microestruturas de solidificação dendríticas, mesmo com baixos teores de soluto na concentração nominal das ligas. Os resultados da evolução microestrutural mostraram que os espaçamentos dendríticos na solidificação radial de fora para dentro acompanham a tendência de reversão observada para a velocidade de deslocamento da isoterma liquidus da superfície ao centro do cilindro

Abstract: The analysis of the thermal behavior in a cylindrical metal/mold system during solidification is of both theoretical and industrial interest. The determination of the rate at which a metal solidifies and of temperature distribution is significant for optimization and control of casting processes. Numerical models are widely used in order to simulate the solidification process in a number of fields including casting, welding, crystal growing and laser processing. The numerical simulation of cylindrical castings can only produce reliable information if the thermal boundary conditions, such as the metal/mold heat transfer coefficient (h), and thermal parameters, such as growth and cooling rates, are known accurately. Despite the importance of h for cylindrical shaped castings, information available in the literature is meager. In the present study, a numerical model for the analysis of radial solidification of cylindrical shaped castings has been developed followed by an extensive experimental study encompassing horizontal and vertical cylindrical shaped castings involving radial heat transfer and including combination of situations of hollow and massive cylindrical castings inwardly and outwardly solidified. Alloys having quite different thermal properties and freezing ranges have been selected for the experimental study. The numerical model has been validated against experimental results of the kinetics of solidification of binary alloys from the adopted metallic systems (Al-Fe and Pb-Sb), as well as by comparison with theoretical predictions provided by an analytical model. An inverse heat conduction method has been used to derive time-varying heat transfer coefficients. It is shown that the h (t) profiles are given by an expression of the form h =a.t±m , where (-) refers to the inward solidification and (+) to the outward solidification against an inner mold. The analysis of the thermal resistance revealed that in some solidification systems, the resistance to heat transfer imposed by the solid layer formed during the solidification process prevailed from a certain moment of solidification. The high values of cooling rates and solidification rates imposed by heat extraction in radial cylindrical geometries induced, for Pb-Sb alloys, a dendritic solidification pattern even for low alloying contents. The evolution of dendritic spacings during the inward solidification followed a reversion, which is similar to that shown to occur for the rate of displacement of the liquidus isotherm from the casting surface to the center of the cylinder
Subject: Solidificação
Modelagem
Metais
Calor - Transferência
Language: Português
Editor: [s.n.]
Citation: BERTELLI, Felipe. Modelagem numérica e análise experimental de parâmetros térmicos e microestruturais na solidificação radial de ligas binárias. 2012. 178 p. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica, Campinas, SP. Disponível em: http://www.repositorio.unicamp.br/handle/REPOSIP/264501. Acesso em: 19 mar. 2020.
Date Issue: 2012
Appears in Collections:FEM - Tese e Dissertação

Files in This Item:
File SizeFormat 
Bertelli_Felipe_D.pdf7.7 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.