Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/262004
Type: DISSERTAÇÃO
Degree Level: Mestrado
Title: Redes neurais, metodologias de agrupamento e combinação de previsores aplicados a previsão de vazões naturais
Author: Magalhães, Marina Hirota
Advisor: Gomide, Fernando Antonio Campos, 1951-
Abstract: Resumo: Planejamento de sistemas hidroeletricos possui um alto grau de complexidade e dificuldade, uma vez que involve caracteristicas de produção não lineares e depende de muitas variaveis. Um das variaveis chave e a vazão natural. Os valores de vazões devem ser previstos com acuracia, uma vez que esses valores influenciam significativamente na produção de energia. Atualmente, no setor de geração hidroeletrica, a previsão de vazões e baseada na metodologia de Box & Jenkins. Este trabalho propõe um modelo de previsão baseado em agrupamento nebuloso como alternativa para a previsão de vazões naturais medias mensais. O modelo utiliza o algoritmo de agrupamento fuzzy c-means para explorar a estrutura dos dados historicos, e procedimentos de mediana e reconhecimento de padrões para capturar similaridades na tendencia das series. Ainda, este trabalho sugere um modelo que combina previsões geradas por um conjunto de m'etodos individuais de previsão, de uma maneira simples, mas efetiva. Utiliza-se, como combinador, uma rede neural treinada com o algoritmo do gradiente. O objetivo e combinar as previsões geradas por diferentes modelos na tentativa de capturar as contribuições das caracteristicas de previão mais importantes de cada previsor individual. Esse metodo tambem e aplicado a previsão de series de vazões naturais medias mensais escolhendo-se, como modelos individuais, aqueles que obtiveram melhor desempenho para uma dada serie. Resultados experimentais com dados reais de vazão sugerem que o modelo preditivo aseado em agrupamento nebuloso obtem um desempenho superior, quando comparado com a metodologia atual de previsão de vazões adotada pelo setor hidroeletrico, e, ainda, com uma rede neural nebulosa, um modelo não linear. Alem disso, o modelo de combinação alcança um desempenho superior que os modelos de previsão individuais, pois apresentam erros de previsão menores

Abstract: In addition, this work suggests a linear approach to combine forecasts generated by a set of individual forecasting models in a simple and effective way. We use, as a combiner, a neural network trained with the gradient descent algorithm. The aim is to combine the forecasts generated by the different forecasting models as an attempt to capture the contributions of the most important prediction features of each individual model at each prediction step. The approach is also used for streamflow time series prediction choosing, as individual forecasting models, the most promising predictive methods. Experimental results with actual data suggest that the predictive clustering approach performs globally better than the current streamflow forecasting methodology adopted by many hydroelectric systems worldwide, and a fuzzy neural network, a nonlinear prediction model. The combination approach, with lower prediction errors, performs better than each of the individual forecasting models
Subject: Sistemas fuzzy - Processamento de dados
Redes neurais (Computação)
Análise de séries temporais - Processamento de dados
Previsão hidrologica
Language: Português
Editor: [s.n.]
Date Issue: 2004
Appears in Collections:FEEC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Magalhaes_MarinaHirota_M.pdf492.21 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.