Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/261870
Type: TESE
Title: Sistema imunologico artificial para otimização multiobjetivo
Title Alternative: Artificial immune system for multiobjetive optimization
Author: Rampazzo, Priscila Cristina Berbert, 1984-
Advisor: Yamakami, Akebo, 1947-
Abstract: Resumo: O objetivo desta dissertação é explorar a utilização de um Sistema Imunológico Artificial, baseado no princípio de Seleção Clonal, na resolução de problemas de Otimização Multiobjetivo. Os Sistemas Imunológicos Artificiais apresentam, em sua estrutura elementar, as principais características requeridas para a resolução de problemas de Otimização Multiobjetivo: exploração, explotação, paralelismo, elitismo, memória, diversidade, mutação e clonagem proporcionais à afinidade e população dinâmica. A abordagem proposta utiliza o conceito de Pareto dominância e factibilidade para identificar os anticorpos (soluções) que devem ser clonados. Nos experimentos, foram consideradas algumas situações importantes que podem aparecer nos problemas reais: presença de restrições (lineares e não-lineares) e formato da Fronteira de Pareto (convexa, côncava, contínua, descontínua, discreta, não-uniforme). Na maioria dos problemas, o algoritmo obteve resultados bons e competitivos quando comparados com as propostas da literatura. Palavras-chave: Otimização Multiobjetivo, Algoritmos Bio-inspirados, Sistemas Imunológicos Artificiais, Seleção Clonal

Abstract: The aim of this work is to explore an Artificial Immune System, based on the Clonal Selection principle, in the solution of Multiobjective Optimization problems. Artificial Immune Systems have, in their elementary structure, the main characteristics required to solve Multiobjective Optimization problems: exploration, exploitation, paralelism, elitism, memory, diversity, mutation and proliferation proportional to the affinity, and dynamic repertorie. The proposed algorithm uses the Pareto dominance concept and feasibility to identify the antibodies (solutions) that must to be cloned. In the experiments, some important situations that occurs in real problems were considered: the presence of constraints (linear and non-linear) and Pareto Front format (convex, concave, continuous, discontinuous, discrete, non-uniforme). In the major part of the problems, the algorithm obtains good and competitive results when compared with approaches from the literature. Keywords: Multiobjective Optimization, Bio-inspired Algorithms, Artificial Immune Systems, Clonal Selection
Subject: Sistema imune
Algoritmos evolutivos
Otimização matemática
Inteligência artificial
Language: Português
Editor: [s.n.]
Date Issue: 2008
Appears in Collections:FEEC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Rampazzo_PriscilaCristinaBerbert_M.pdf1.26 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.