Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/261053
Type: TESE
Title: Controle de sistemas dinamicos : estabilidade absoluta, saturação e bilinearidade
Title Alternative: Control of dynamic systems : absolute stability, saturation and bilinearity
Author: Tognetti, Tais Calliero
Advisor: Peres, Pedro Luis Dias, 1960-
Abstract: Resumo: Esta tese apresenta contribuições para a solução de problemas de análise de estabilidade e síntese de controladores por realimentação de estados de sistemas dinâmicos que possuem elementos não-lineares, por meio de condições na forma de desigualdades matriciais lineares e funções de Lyapunov. Para sistemas chaveados sujeitos a saturação nos atuadores, são fornecidas condições convexas para o cálculo de ganhos chaveados e robustos. A saturação é modelada como uma não-linearidade de setor e uma estimativa do domínio de estabilidade é determinada. Para sistemas lineares com incertezas politópicas e não-linearidades pertencentes a setores, são fornecidas condições convexas de dimensão finita para construir funções de Lur'e com dependência polinomial homogênea nos parâmetros. Se satisfeitas, as condições garantem a estabilidade para todo o domínio de incertezas e para todas as não-linearidades pertencentes ao setor e permitem o cômputo de controladores estabilizantes robustos por realimentação linear e não-linear. Para sistemas bilineares instáveis, contínuos e discretos no tempo, é proposto um procedimento para calcular um ganho estabilizante de controle por realimentação de estados. O método baseia-se na solução alternada de dois problemas de otimização convexa descritos por desigualdades matriciais lineares, fornecendo uma estimativa do domínio de estabilidade. Extensões para tratar controladores robustos e lineares variantes com parâmetros são também apresentadas.

Abstract: This thesis presents contributions to the solution of the problems of stability analysis and synthesis of state feedback controllers for dynamic systems with non-linear elements, by means of conditions based on linear matrix inequalities and Lyapunov functions. For switched systems subject to saturation in the actuators, convex conditions to design switched and robust controllers are presented. The saturation is modeled as a sector non-linearity and an estimate of the domain of stability is determined. For linear systems with polytopic uncertainties and sector non-linearities, convex conditions of finite dimension to build Lur'e functions with homogeneous polynomially parameter dependence are provided. If satisfied, the conditions guarantee the stability of the entire domain of uncertainty for all sector non-linearities, allowing the design of linear and non-linear robust state feedback stabilizing controllers. For continuous and discrete-time unstable bilinear systems, a procedure to design a state feedback stabilizing control gain is proposed. The method is based on the alternate solution of two convex optimization problems described by linear matrix inequalities, providing an estimate of the domain of stability. Extensions to handle robust and linear parameter varying controllers are also presented.
Subject: Teoria do controle
Lyapunov, Funções de
Otimização matemática
Sistemas não lineares
Estabilidade
Language: Português
Editor: [s.n.]
Date Issue: 2009
Appears in Collections:FEEC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Tognetti_TaisCalliero_D.pdf1.4 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.