Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/26101
Type: Artigo de periódico
Title: Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis
Author: Oliveira-Esquerre, K.P.
Mori, M.
Bruns, R.E.
Abstract: This work presents a way to predict the biochemical oxygen demand (BOD) of the output stream of the biological wastewater treatment plant at RIPASA S/A Celulose e Papel, one of the major pulp and paper plants in Brazil. The best prediction performance is achieved when the data are preprocessed using principal components analysis (PCA) before they are fed to a backpropagated neural network. The influence of input variables is analyzed and satisfactory prediction results are obtained for an optimized situation.
Subject: Artificial neural networks
Principal components analysis
Wastewater treatment and Biochemical oxygen demand
Editor: Brazilian Society of Chemical Engineering
Rights: aberto
Identifier DOI: 10.1590/S0104-66322002000400002
Address: http://dx.doi.org/10.1590/S0104-66322002000400002
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322002000400002
Date Issue: 1-Dec-2002
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
S0104-66322002000400002.pdf152.88 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.