Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/260988
Type: TESE
Degree Level: Doutorado
Title: Planejamento e rastreamento de trajetorias e controle de posição atraves de algoritmos geneticos e redes neurais artificiais
Title Alternative: Planning and tracking of trajectories and position control by genetic algorithms and artificial neural networks
Author: Monteiro, Dionne Cavalcante
Advisor: Madrid, Marconi Kolm, 1962-
Abstract: Resumo: Neste trabalho os algoritmos genéticos e as redes neurais artificiais, técnicas de inteligência artificial, são empregadas para algumas das tarefas que podem ser realizadas por um braço de robô. Inicialmente os algoritmos genéticos são empregados para o controle de trajetória de um robô em um espaço de trabalho que possui a presença de um obstáculo. Operações como crossover e mutação são apresentadas, principalmente por estar-se tratando de trajetórias que são formadas por segmentos de retas. As redes neurais artificiais são testadas no controle direto de dois processos reais usados como paradigma: uma mesa XY e um pêndulo invertido acionado. Para tais processos, é utilizada uma estrutura bastante simplificada, onde a rede neural artificial fornece um ganho para o controlador proporcional que calcula o sinal de controle a ser aplicado. O erro do processo serve para treinar a rede neural sem ser considerado nenhum tipo de treinamento anterior, ou seja, todo o controle neural é executado em tempo real, além disso, uma função determina a taxa de aprendizagem do algoritmo back-propagation em função dos erro existentes nas malhas de controle dos processos. Como existem diversas variáveis para tais controladores neurais, foi também considerado que não existia a possibilidade de se definir o melhor controlador para um determinado processo. Para resolver tal problema, um algoritmo genético foi utilizado para designar qual o melhor controlador para um determinado espaço de trabalho no qual o número de neurônios das camadas de entrada e escondida, constantes de configuração do controlador, e a topologia da rede são otimizados dentro do espaço considerado pelo algoritmo. Todos os resultados importantes obtidos são mostrados, visando mostrar que as técnicas de inteligência artificial podem ser aplicadas à robótica com a vantagem de diminuir, principalmente, o tempo de planejamento de tarefas, tais como: planejamento de trajetória, rastreamento de trajetória, e projeto de controladores eficientes

Abstract: In this work genetic algorithms and artificial neural networks are used for robot arm tasks. Initially, the genetic algorithms are employed to control the trajectory of a robot arm in a limited workspace with an obstacle. Operations like crossover and mutation are presented to manipulate trajectories determined by line segments. Artificial neural networks are tested to control two realtime processes: a XY-Table and an inverted pendulum. For these processes, it is used a simple structured control where the neural network provides a gain to the proportional control, generating a control signal to the processes. The process error is used for training a neural network, without any kind of off-line training, i.e., the training of the neural network is in realtime. Also, a function determines the learning rate of the back-propagation algorithms as a function of the errors of the process control. Since the neural controller have multiple variables, it was not possible to define an optimal controller for the processes. To solve this problem, a genetic algorithm was used to determine the best neural controller in the workspace used, where the number of neurons in the input and hidden layers, constants to configure the neural controller and the network topology are optimized. The results obtained show that artificial intelligent techniques can be applied to robotics reducing the time of task planning, like: trajectory planning, track planning and the project of efficient controllers
Subject: Robos
Robos - Sistemas de controle
Algoritmos genéticos
Redes neurais (Computação)
Language: Português
Editor: [s.n.]
Date Issue: 2003
Appears in Collections:FEEC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Monteiro_DionneCavalcante_D.pdf1.32 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.