Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/260553
Type: TESE
Degree Level: Doutorado
Title: Analise e previsões de vasões utilizando modelos de series temporais, redes neurais e redes neurais nebulosas
Author: Ballini, Rosangela, 1969-
Advisor: Andrade Filho, Marinho Gomes de
Filho, Marinho Gomes de Andrade
Abstract: Resumo: Análise e previsão de vazões são de fundamental importância no planejamento da operação de sistemas de recursos hídricos. Uma das grandes dificuldades na previsão das séries de vazões é a presença da sazonalidade devido aos períodos de cheia e seca do ano. Os modelos estocásticos foram, por um longo tempo, a alternativa mais comum aos modelos determinísticos ou hidrológicos na análise e previsão de vazões, baseados principalmente na metodologia de Box & Jenkins. Esta metodologia exige algum tipo de manuseio nos dados para tratar a não-estacionariedade ou o uso de modelos periódicos, necessitando de uma laboriosa formulação teórica para os procedimentos estatísticos. Redes neurais artificiais, especialmente redes multi-camadas com algoritmo back-propagation vêm sendo sugeridas para análise de séries temporais devido a sua capacidade para tratar com relações não-lineares.de entrada-saída, destacando sua habilidade de aprendizado e capacidade de generalização, associação e busca paralela. Estas qualidades as tornam capazes de identificar e assimilar as características mais marcantes das séries, tais como sazonalidade, periodicidade, tendência, entre outras, muitas vezes camufladas por ruídos. A capacidade de mapeamentos complexos das redes neurais cresce com o número de camadas e neurônios, acarretando :illaior tempo de processamento bem como considerável soma de dados. Entretanto, na prática muitas vezes os parâmetros devem ser estimados rapidamente e somente uma pequena quantidade de dados é disponível. Freqüentemente, dados do mundo real apresentam ruídos, podendo conter contradições e imperfeições. Tolerância a imprecisão e incertezas é também exigida para considerar tratabilidade e robustez. Conjuntos nebulosos baseados em modelos de análise de dados vêm sendo empregados sob essas hipóteses. A aplicação de modelos de redes neurais nebulosas une os benefícios das redes neurais e da teoria de conjuntos nebulosos, combinando-os em um sistema integrado para previsão de vazões naturais médias mensais. São realizadas análise e previsão de vazões usando modelos de séries temporais, redes neurais e redes neurais nebulosas para previsão um passo à frente e vários passos à frente para as séries das usinas hidroelétricas brasileiras localizadas em diferentes regiões. O desempenho dos modelos foi comparado e os resultados mostraram que os modelos propostos apresentaram melhor desempenho que as outras abordagens tanto para previsão um passo à frente como para previsão com vários passos à frente

Abstract: Analysis and forecast of seasonal stream flow series are of utmost importance in the operation planning of water resources systems. One of the greatest difficulties in forecasting of those series is the seasonality nature of stream flow series due to wet and dry periods of the year. For a long time, the use of stochastic models, based on the c1assic Box & Jenkins methodology, were the most employed alternative to the deterministic or hydrologic models in the analysis and forecast of stream flow series. This methodology requires either some kind of data manipulation to deal with the nonstationarity or the use of periodic models. Therefore the statistical procedures, requires an arduous theoretical formulation. Artificial Neural Networks (ANN), especially multilayer perceptrons with a back-propagation algorithm, have recently been suggested for time series analysis. They have the ability to deal with nonlinear input-output relationships. Their major assets are the learning ability and generalization, association and parallel search capability. These qualities enable them to identify and to assimilate some of the features of the series as seasonality, periodicity, tendency sometimes difficult to detect under noise. The capability of complex mapping of the ANN increases with the number of layers and neurons. The use of ANN usually requires the investment of a long period of time in the modeling process, as well as a considerable amount of data. ln practice, however, the parameters usually must be quickly estimated and only a small quantity of data is available. Very often, real world data are noisy, and the collected data may contain contradictions and imperfections. Tolerance for imprecision and uncertainty is also required to achieve tractability and robustness. Fuzzy sets based data analysis models have been especially suitable for these purposes. This suggests the application of neurofuzzy network models to seasonal stream flow forecasting. These models combine the advantages of the ANN and fuzzy set based approaches in a single integrated decision-making system. Analysis and forecast of stream flows one-step-ahead and multi-step-ahead are accomplished, using time series models, neural networks, and neurofuzzy networks. Database of average monthly inflows from Brazilian hydroelectric plants located in different river basins were used. The performance of the models was compared and the results show that the models here proposed provide a better performance than the others ones considering one-step-ahead forecasting and multi-step-ahead forecasting
Subject: Previsão hidrologica
Análise de séries temporais
Redes neurais (Computação)
Conjuntos fuzzy
Language: Português
Editor: [s.n.]
Date Issue: 2000
Appears in Collections:FEEC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Ballini_Rosangela_D.pdf10.12 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.