Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/259088
Type: DISSERTAÇÃO
Degree Level: Mestrado
Title: Tratamento de dados faltantes empregando biclusterização com imputação múltipla
Title Alternative: Treatment of missing data using biclustering with multiple imputation
Author: Veroneze, Rosana, 1982-
Advisor: Von Zuben, Fernando José, 1968-
Zuben, Fernando José Von, 1968-
Abstract: Resumo: As respostas fornecidas por sistemas de recomendação podem ser interpretadas como dados faltantes a serem imputados a partir do conhecimento dos dados presentes e de sua relação com os dados faltantes. Existem variadas técnicas de imputação de dados faltantes, sendo que o emprego de imputação múltipla será considerado neste trabalho. Também existem propostas alternativas para se chegar à imputação múltipla, sendo que se propõe aqui a biclusterização como uma estratégia eficaz, flexível e com desempenho promissor. Para tanto, primeiramente é realizada a análise de sensibilidade paramétrica do algoritmo SwarmBcluster, recentemente proposto para a tarefa de biclusterização e já adaptado, na literatura, para a realização de imputação única. Essa análise mostrou que a escolha correta dos parâmetros pode melhorar o desempenho do algoritmo. Em seguida, o SwarmBcluster é estendido para a implementação de imputação múltipla, sendo comparado com o bem-conhecido algoritmo NORM. A qualidade dos resultados obtidos é mensurada através de métricas diversas, as quais mostram que a biclusterização conduz a imputações múltiplas de melhor qualidade na maioria dos experimentos

Abstract: The answers provided by recommender systems can be interpreted as missing data to be imputed considering the knowledge associated with the available data and the relation between the available and the missing data. There is a wide range of techniques for data imputation, and this work is concerned with multiple imputation. Alternative approaches for multiple imputation have already been proposed, and this work takes biclustering as an effective, flexible and promising strategy. To this end, firstly it is performed a parameter sensitivity analysis of the SwarmBcluster algorithm, recently proposed to implement biclustering and already adapted, in the literature, to accomplish single imputation of missing data. This analysis has indicated that a proper choice of parameters may significantly improve the performance of the algorithm. Secondly, SwarmBcluster was extended to implement multiple imputation, being compared with the well-known NORM algorithm. The quality of the obtained results is computed considering diverse metrics, which reveal that biclustering guides to imputations of better quality in the majority of the experiments
Subject: Dados faltantes (Estatística)
Sistemas de recomendação
Cluster
Algoritmos evolutivos
Mineração de dados (Computação)
Language: Português
Editor: [s.n.]
Date Issue: 2011
Appears in Collections:FEEC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Veroneze_Rosana_M.pdf1.95 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.