Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Analysis of energetically biased transcripts of viruses and transposable elements
Author: Secolin, Rodrigo
Bitencourt Pascoal, Vinicius D'Avila
Lopes-Cendes, Iscia
Pereira, Tiago Campos
Abstract: RNA interference (RNAi) is a natural endogenous process by which double-stranded RNA molecules trigger potent and specific gene silencing in eukaryotic cells and is characterized by target RNA cleavage. In mammals, small interfering RNAs (siRNAs) are the trigger molecules of choice and constitute a new class of RNA-based antiviral agents. In an efficient RNAi response, the antisense strand of siRNAs must enter the RNA-induced silencing complex (RISC) in a process mediated by thermodynamic features. In this report, we hypothesize that silent mutations capable of inverting thermodynamic properties can promote resistance to siRNAs. Extensive computational analyses were used to assess whether continuous selective pressure that promotes such mutations could lead to the emergence of viral strains completely resistant to RNAi (i.e., prone to transfer only the sense strands to RISC). Based on our findings, we propose that, although synonymous mutations may produce functional resistance, this strategy cannot be systematically adopted by viruses since the longest RNAi-refractory sequence is only 10 nt long. This finding also suggests that all mRNAs display fluctuating thermodynamic landscapes and that, in terms of thermodynamic features, RNAi is a very efficient antiviral system since there will always be sites susceptible to siRNAs.
Subject: RNAi
synonymous mutation
viral evolution
Country: Brazil
Editor: Soc Brasil Genetica
Citation: Genetics and Molecular Biology. Soc Brasil Genetica, v.35, n.4, p.868-873, 2012
Rights: fechado
Date Issue: 2012
Appears in Collections:FCM - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.