Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/244245
Type: | Artigo |
Title: | Flat-band ferromagnetism and spin waves in topological Hubbard models |
Author: | Doretto, R. L. Goerbig, M. O. |
Abstract: | We study the flat-band ferromagnetic phase of a topological Hubbard model within a bosonization formalism and, in particular, determine the spin-wave excitation spectrum. We consider a square lattice Hubbard model at 1/4-filling whose free-electron term is the p-flux model with topologically nontrivial and nearly flat energy bands. The electron spin is introduced such that the model either explicitly breaks time-reversal symmetry (correlated flat-band Chern insulator) or is invariant under time-reversal symmetry (correlated flat-band Z(2) topological insulator). We generalize for flat-band Chern and topological insulators the bosonization formalism [R. L. Doretto, A. O. Caldeira, and S. M. Girvin, Phys. Rev. B 71, 045339 (2005)] previously developed for the two-dimensional electron gas in a uniform and perpendicular magnetic field at filling factor nu = 1. We show that, within the bosonization scheme, the topological Hubbard model is mapped to an effective interacting boson model. We consider the boson model at the harmonic approximation and show that, for the correlated Chern insulator, the spin-wave excitation spectrum is gapless while, for the correlated topological insulator, gapped. We briefly comment on the possible effects of the boson-boson (spin-wave-spin-wave) coupling. We study the flat-band ferromagnetic phase of a topological Hubbard model within a bosonization formalism and, in particular, determine the spin-wave excitation spectrum. We consider a square lattice Hubbard model at 1/4-filling whose free-electron term is the p-flux model with topologically nontrivial and nearly flat energy bands. The electron spin is introduced such that the model either explicitly breaks time-reversal symmetry (correlated flat-band Chern insulator) or is invariant under time-reversal symmetry (correlated flat-band Z(2) topological insulator). We generalize for flat-band Chern and topological insulators the bosonization formalism [R. L. Doretto, A. O. Caldeira, and S. M. Girvin, Phys. Rev. B 71, 045339 (2005)] previously developed for the two-dimensional electron gas in a uniform and perpendicular magnetic field at filling factor nu = 1. We show that, within the bosonization scheme, the topological Hubbard model is mapped to an effective interacting boson model. We consider the boson model at the harmonic approximation and show that, for the correlated Chern insulator, the spin-wave excitation spectrum is gapless while, for the correlated topological insulator, gapped. We briefly comment on the possible effects of the boson-boson (spin-wave-spin-wave) coupling. |
Subject: | Hubbard, Modelo de Hall, Efeito quântico de Ferromagnetismo |
Country: | Estados Unidos |
Editor: | American Physical Society |
Citation: | Flat-band Ferromagnetism And Spin Waves In Topological Hubbard Models. Amer Physical Soc, v. 92, p. DEC-2015. |
Rights: | aberto |
Identifier DOI: | 10.1103/PhysRevB.92.245124 |
Address: | https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.245124 |
Date Issue: | 2015 |
Appears in Collections: | IFGW - Artigos e Outros Documentos |
Files in This Item:
File | Size | Format | |
---|---|---|---|
000366732100003.pdf | 591.38 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.