Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Regularization Of Hidden Dynamics In Piecewise Smooth Flows
Author: Novaes
Douglas D.; Jeffrey
Mike R.
Abstract: This paper studies the equivalence between differentiable and non-differentiable dynamics in R-n. Filippov's theory of discontinuous differential equations allows us to find flow solutions of dynamical systems whose vector fields undergo switches at thresholds in phase space. The canonical convex combination at the discontinuity is only the linear part of a nonlinear combination that more fully explores Filippov's most general problem: the differential inclusion. Here we show how recent work relating discontinuous systems to singular limits of continuous (or regularized) systems extends to nonlinear combinations. We show that if sliding occurs in a discontinuous systems, there exists a differentiable slow fast system with equivalent slow invariant dynamics. We also show the corresponding result for the pinching method, a converse to regularization which approximates a smooth system by a discontinuous one. (C) 2015 Elsevier Inc. All rights reserved.
Subject: Structural Stability
Country: SAN DIEGO
Rights: embargo
Identifier DOI: 10.1016/j.jde.2015.06.005
Date Issue: 2015
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
wos_000359507800005.pdf404.28 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.