Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Graphene Oxide-silver Nanocomposite As A Promising Biocidal Agent Against Methicillin-resistant Staphylococcus Aureus
Author: Mazarin de Moraes
Ana Carolina; Lima
Bruna Araujo; de Faria
Andreia Fonseca; Brocchi
Marcelo; Alves
Oswaldo Luiz
Abstract: Background: Methicillin-resistant Staphylococcus aureus (MRSA) has been responsible for serious hospital infections worldwide. Nanomaterials are an alternative to conventional antibiotic compounds, because bacteria are unlikely to develop microbial resistance against nanomaterials. In the past decade, graphene oxide (GO) has emerged as a material that is often used to support and stabilize silver nanoparticles (AgNPs) for the preparation of novel antibacterial nanocomposites. In this work, we report the synthesis of the graphene-oxide silver nanocomposite (GO-Ag) and its antibacterial activity against relevant microorganisms in medicine. Materials and methods: GO-Ag nanocomposite was synthesized through the reduction of silver ions (Ag+) by sodium citrate in an aqueous GO dispersion, and was extensively characterized using ultraviolet-visible absorption spectroscopy, X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. The antibacterial activity was evaluated by microdilution assays and time-kill experiments. The morphology of bacterial cells treated with GO-Ag was investigated via transmission electron microscopy. Results: AgNPs were well distributed throughout GO sheets, with an average size of 9.4 +/- 2.8 nm. The GO-Ag nanocomposite exhibited an excellent antibacterial activity against methicillin-resistant S. aureus, Acinetobacter baumannii, Enterococcus faecalis, and Escherichia coli. All (100%) MRSA cells were inactivated after 4 hours of exposure to GO-Ag sheets. In addition, no toxicity was found for either pristine GO or bare AgNPs within the tested concentration range. Transmission electronic microscopy images offered insights into how GO-Ag nanosheets interacted with bacterial cells. Conclusion: Our results indicate that the GO-Ag nanocomposite is a promising antibacterial agent against common nosocomial bacteria, particularly antibiotic-resistant MRSA. Morphological injuries on MRSA cells revealed a likely loss of viability as a result of the direct contact between bacteria and the GO-Ag sheets.
Subject: Gram-negative Bacteria
Antibacterial Activity
Antimicrobial Activity
Country: ALBANY
Citation: Graphene Oxide-silver Nanocomposite As A Promising Biocidal Agent Against Methicillin-resistant Staphylococcus Aureus. Dove Medical Press Ltd, v. 10, p. 6847-6861 2015.
Rights: aberto
Identifier DOI: 10.2147/IJN.S90660
Date Issue: 2015
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
wos_000364173100001.pdf7.42 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.