Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/242647
Type: | Artigo |
Title: | Bayesian inference on the memory parameter for Gamma-modulated regression models |
Author: | Andrade, Plinio Rifo, Laura Torres, Soledad Torres-Avilés, Francisco |
Abstract: | In this work, we propose a Bayesian methodology to make inferences for the memory parameter and other characteristics under non-standard assumptions for a class of stochastic processes. This class generalizes the Gamma-modulated process, with trajectories that exhibit long memory behavior, as well as decreasing variability as time increases. Different values of the memory parameter influence the speed of this decrease, making this heteroscedastic model very flexible. Its properties are used to implement an approximate Bayesian computation and MCMC scheme to obtain posterior estimates. We test and validate our method through simulations and real data from the big earthquake that occurred in 2010 in Chile. In this work, we propose a Bayesian methodology to make inferences for the memory parameter and other characteristics under non-standard assumptions for a class of stochastic processes. This class generalizes the Gamma-modulated process, with trajectories that exhibit long memory behavior, as well as decreasing variability as time increases. Different values of the memory parameter influence the speed of this decrease, making this heteroscedastic model very flexible. Its properties are used to implement an approximate Bayesian computation and MCMC scheme to obtain posterior estimates. We test and validate our method through simulations and real data from the big earthquake that occurred in 2010 in Chile. |
Subject: | Inferência bayesiana Métodos MCMC (Estatística) Teoria bayesiana de decisão estatistica |
Country: | Suíça |
Editor: | MDPI |
Citation: | Bayesian Inference On The Memory Parameter For Gamma-modulated Regression Models. Mdpi Ag, v. 17, p. 6576-6597 OCT-2015. |
Rights: | aberto |
Identifier DOI: | 10.3390/e17106576 |
Address: | https://www.mdpi.com/1099-4300/17/10/6576 |
Date Issue: | 2015 |
Appears in Collections: | IMECC - Artigos e Outros Documentos |
Files in This Item:
File | Size | Format | |
---|---|---|---|
000364216800003.pdf | 669.5 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.